Caffeine increases exercise intensity and energy expenditure but does not modify substrate oxidation during 1 h of self-paced cycling.

Carlos Ruiz-Moreno, Francisco J Amaro-Gahete, Jaime González-García, Verónica Giráldez-Costas, Asier Mañas, Jorge Gutiérrez-Hellín, Juan Del Coso
Author Information
  1. Carlos Ruiz-Moreno: Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain.
  2. Francisco J Amaro-Gahete: Department of Physiology, EFFECTS-262 Research Group, Faculty of Medicine, University of Granada, Granada, Spain.
  3. Jaime González-García: Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain.
  4. Verónica Giráldez-Costas: Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain.
  5. Asier Mañas: Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain.
  6. Jorge Gutiérrez-Hellín: Faculty of Education, Francisco de Vitoria University, Madrid, Spain.
  7. Juan Del Coso: Centre for Sport Studies, Rey Juan Carlos University, Camino del Molino, s/n, Fuenlabrada, 28943, Madrid, Spain. juan.delcoso@urjc.es. ORCID

Abstract

AIM: Oral caffeine intake has been deemed as an effective supplementation strategy to enhance fat oxidation during aerobic exercise with a steady-state intensity. However, in real exercise scenarios, individuals habitually train with autoregulation of exercise intensity. This study aimed to analyze the effect of oral caffeine intake during self-paced cycling on autoregulated exercise intensity and substrate oxidation.
METHODS: Fifteen young and healthy participants (11 men and 4 women) participated in a double-blind, randomized, cross-over investigation. Each participant took part in 2 experimental days consisting of pedaling for 1 h with a self-selected wattage. Participants were told that they had to exercise at a moderate intensity to maximize fat oxidation. On one occasion participants ingested 3 mg/kg of caffeine and on the other occasion ingested a placebo. Energy expenditure, fat oxidation rate, and carbohydrate oxidation rate were continuously measured during exercise by indirect calorimetry.
RESULTS: In comparison to the placebo, caffeine intake increased the self-selected wattage (on average, 105 ± 44 vs 117 ± 45 W, respectively, P < 0.001) which represented a higher total work during the cycling session (377 ± 157 vs 422 ± 160 kJ, P < 0.001). Caffeine increased total energy expenditure (543 ± 161 vs 587 ± 155 kcal, P = 0.042) but it did not affect total fat oxidation (24.7 ± 12.2 vs 22.9 ± 11.5 g, P = 0.509) or total carbohydrate oxidation (87.4 ± 22.4 vs 97.8 ± 32.3 g, P = 0.101).
CONCLUSION: Acute caffeine ingestion before an exercise session with an individual's freedom to regulate intensity induces a higher self-selected exercise intensity and total work. The selection of a higher exercise intensity augments total energy expenditure but eliminates the effect of caffeine on substrate oxidation during exercise.

Keywords

References

  1. Maughan RJ, Burke LM, Dvorak J et al (2018) IOC consensus statement: dietary supplements and the high-performance athlete. Br J Sports Med 52:439 LP – 455. https://doi.org/10.1136/bjsports-2018-099027 [DOI: 10.1136/bjsports-2018-099027]
  2. Grgic J, Grgic I, Pickering C et al (2019) Wake up and smell the coffee: Caffeine supplementation and exercise performance—an umbrella review of 21 published meta-analyses. Br J Sports Med 54:681–688. https://doi.org/10.1136/bjsports-2018-100278 [DOI: 10.1136/bjsports-2018-100278]
  3. Salinero JJ, Lara B, Del Coso J (2019) Effects of acute ingestion of caffeine on team sports performance: a systematic review and meta-analysis. Res Sport Med. 27:238–256. https://doi.org/10.1080/15438627.2018.1552146 [DOI: 10.1080/15438627.2018.1552146]
  4. Gutiérrez-Hellín J, Del Coso J (2018) Effects of p-synephrine and caffeine ingestion on substrate oxidation during exercise. Med Sci Sport Exerc 50:1899–1906. https://doi.org/10.1249/MSS.0000000000001653 [DOI: 10.1249/MSS.0000000000001653]
  5. Ruiz-Moreno C, Gutiérrez-Hellín J, Amaro-Gahete FJ et al (2020) Caffeine increases whole-body fat oxidation during 1 h of cycling at Fatmax. Eur J Nutr. https://doi.org/10.1007/s00394-020-02393-z [DOI: 10.1007/s00394-020-02393-z]
  6. Collado-Mateo D, Lavín-Pérez AM, Merellano-Navarro E, Del Coso J (2020) Effect of acute caffeine intake on the fat oxidation rate during exercise: a systematic review and meta-analysis. Nutrients 12:1–18. https://doi.org/10.3390/nu12123603 [DOI: 10.3390/nu12123603]
  7. Ramírez-Maldonado M, Jurado-Fasoli L, del Coso J et al (2021) Caffeine increases maximal fat oxidation during a graded exercise test: is there a diurnal variation? J Int Soc Sports Nutr. https://doi.org/10.1186/s12970-020-00400-6 [DOI: 10.1186/s12970-020-00400-6]
  8. Costill DL, Dalsky GP, Fink WJ (1978) Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports 10:155–158 [PMID: 723503]
  9. Essig D, Costill D, Van Handel P (1980) Effects of caffeine ingestion on utilization of muscle glycogen and lipid during leg ergometer cycling. Int J Sports Med 01:86–90. https://doi.org/10.1055/s-2008-1034637 [DOI: 10.1055/s-2008-1034637]
  10. Ivy JL, Costill DL, Fink WJ, Lower RW (1979) Influence of caffeine and carbohydrate feedings on endurance performance. Med Sci Sports 11:6–11 [DOI: 10.2165/00007256-199111010-00002]
  11. Glaister M, Pattison JR, Muniz-Pumares D et al (2015) Effects of dietary nitrate, caffeine, and their combination on 20-km cycling time trial performance. J Strength Cond Res 29:165–174. https://doi.org/10.1519/JSC.0000000000000596 [DOI: 10.1519/JSC.0000000000000596]
  12. Green J, Olenick A, Eastep C, Winchester L (2016) Caffeine effects on velocity selection and physiological responses during RPE production. Appl Physiol Nutr Metab 41:1077–1082. https://doi.org/10.1139/APNM-2016-0098 [DOI: 10.1139/APNM-2016-0098]
  13. Purdom T, Kravitz L, Dokladny K, Mermier C (2018) Understanding the factors that effect maximal fat oxidation. J Int Soc Sports Nutr 15:3. https://doi.org/10.1186/s12970-018-0207-1 [DOI: 10.1186/s12970-018-0207-1]
  14. Doherty M, Smith PM (2005) Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scand J Med Sci Sports 15:69–78. https://doi.org/10.1111/j.1600-0838.2005.00445.x [DOI: 10.1111/j.1600-0838.2005.00445.x]
  15. Filip A, Wilk M, Krzysztofik M, Del Coso J (2020) Inconsistency in the ergogenic effect of caffeine in athletes who regularly consume caffeine: is it due to the disparity in the criteria that defines habitual caffeine intake? Nutrients 12:1087. https://doi.org/10.3390/nu12041087 [DOI: 10.3390/nu12041087]
  16. Brouwer E (1957) On simple formulae for calculating the heat expenditure and the quantities of carbohydrate and fat oxidized in metabolism of men and animals, from gaseous exchange (Oxygen intake and carbonic acid output) and urine-N. Acta Physiol Pharmacol Neerl 6:795–802 [PMID: 13487422]
  17. Frayn KN (2016) Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol
  18. Edvardsen E, Hem E, Anderssen SA (2014) End criteria for reaching maximal oxygen uptake must be strict and adjusted to sex and age: a cross-sectional study. PLoS ONE. https://doi.org/10.1371/journal.pone.0085276 [DOI: 10.1371/journal.pone.0085276]
  19. Borg GAV (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc. https://doi.org/10.1249/00005768-198205000-00012 [DOI: 10.1249/00005768-198205000-00012]
  20. Salinero JJ, Lara B, Abian-Vicen J et al (2014) The use of energy drinks in sport: perceived ergogenicity and side effects in male and female athletes. Br J Nutr 112:1494–1502. https://doi.org/10.1017/S0007114514002189 [DOI: 10.1017/S0007114514002189]
  21. Burke LM, Hawley JA, Wong SHS, Jeukendrup AE (2011) Carbohydrates for training and competition. J Sports Sci 29:S17–S27. https://doi.org/10.1080/02640414.2011.585473 [DOI: 10.1080/02640414.2011.585473]
  22. McDermott BP, Anderson SA, Armstrong LE et al (2017) National athletic trainers’ association position statement: fluid replacement for the physically active. J Athl Train 52:877–895. https://doi.org/10.4085/1062-6050-52.9.02 [DOI: 10.4085/1062-6050-52.9.02]
  23. Casa DJ, Armstrong LE, Hillman SK et al (2000) National athletic trainers’ association position statement: fluid replacement for athletes. J Athl Train 35:212–224 [PMID: 16558633]
  24. Ruiz-Moreno C, Lara B, Salinero JJ et al (2020) Time course of tolerance to adverse effects associated with the ingestion of a moderate dose of caffeine. Eur J Nutr. https://doi.org/10.1007/s00394-019-02167-2 [DOI: 10.1007/s00394-019-02167-2]
  25. McCall AL, Millington WR, Wurtman RJ (1982) Blood-brain barrier transport of caffeine: dose-related restriction of adenine transport. Life Sci 31:2709–2715. https://doi.org/10.1016/0024-3205(82)90715-9 [DOI: 10.1016/0024-3205(82)90715-9]
  26. Meeusen R, Roelands B, Spriet LL (2013) Caffeine, exercise and the brain. Nestle Nutr Inst Workshop Ser 76:1–12. https://doi.org/10.1159/000350223 [DOI: 10.1159/000350223]
  27. Killen LG, Green JM, O’Neal EK et al (2013) Effects of caffeine on session ratings of perceived exertion. Eur J Appl Physiol 113:721–727. https://doi.org/10.1007/s00421-012-2480-z [DOI: 10.1007/s00421-012-2480-z]
  28. Lara B, Ruiz-Moreno C, Salinero JJ, Del Coso J (2019) Time course of tolerance to the performance benefits of caffeine. PLoS ONE 14:e0210275. https://doi.org/10.1371/journal.pone.0210275 [DOI: 10.1371/journal.pone.0210275]
  29. Ruiz-moreno C, Lara B, Gutiérrez-hellín J et al (2020) Time course and magnitude of tolerance to the ergogenic effect of caffeine on the second ventilatory threshold. Life 10:1–12. https://doi.org/10.3390/life10120343 [DOI: 10.3390/life10120343]
  30. Donelly K, McNaughton L (1992) The effects of two levels of caffeine ingestion on excess postexercise oxygen consumption in untrained women. Eur J Appl Physiol Occup Physiol 65:459–463. https://doi.org/10.1007/BF00243514 [DOI: 10.1007/BF00243514]
  31. Graham TE, Spriet LL (1995) Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J Appl Physiol 78:867–874. https://doi.org/10.1152/jappl.1995.78.3.867 [DOI: 10.1152/jappl.1995.78.3.867]
  32. Lara B, Salinero JJ, Giráldez-Costas V, Del Coso J (2021) Similar ergogenic effect of caffeine on anaerobic performance in men and women athletes. Eur J Nutr 60:4107–4114. https://doi.org/10.1007/s00394-021-02510-6 [DOI: 10.1007/s00394-021-02510-6]
  33. Skinner TL, Desbrow B, Arapova J et al (2019) Women experience the same ergogenic response to caffeine as men. Med Sci Sport Exerc. https://doi.org/10.1249/MSS.0000000000001885 [DOI: 10.1249/MSS.0000000000001885]

MeSH Term

Caffeine
Calorimetry, Indirect
Cross-Over Studies
Dietary Carbohydrates
Double-Blind Method
Energy Metabolism
Exercise
Female
Humans
Male
Oxidation-Reduction

Chemicals

Dietary Carbohydrates
Caffeine

Word Cloud

Created with Highcharts 10.0.0exerciseoxidationintensitycaffeinetotalvsfatexpenditureintakecyclingsubstrateself-selectedhigherenergyP = 0effectself-pacedparticipants421 hwattageoccasioningestedplaceboratecarbohydrateincreasedP < 0001worksessionCaffeinelossAIM:Oraldeemedeffectivesupplementationstrategyenhanceaerobicsteady-stateHoweverrealscenariosindividualshabituallytrainautoregulationstudyaimedanalyzeoralautoregulatedMETHODS:Fifteenyounghealthy11menwomenparticipateddouble-blindrandomizedcross-overinvestigationparticipanttookpartexperimentaldaysconsistingpedalingParticipantstoldmoderatemaximizeone3 mg/kgEnergycontinuouslymeasuredindirectcalorimetryRESULTS:comparisonaverage105 ± 44117 ± 45 Wrespectivelyrepresented377 ± 157422 ± 160 kJ543 ± 161587 ± 155 kcal042affect247 ± 12229 ± 115 g509874 ± 22978 ± 323 g101CONCLUSION:Acuteingestionindividual'sfreedomregulateinducesselectionaugmentseliminatesincreasesmodifyAerobicDietarysupplementEnduranceFatWeight

Similar Articles

Cited By