Training allows switching from limited-capacity manipulations to large-capacity perceptual processing.

Tamar Malinovitch, Philippe Albouy, Robert J Zatorre, Merav Ahissar
Author Information
  1. Tamar Malinovitch: Department of Cognitive and Brain Sciences, Hebrew University of Jerusalem, Mount Scopus, Jerusalem 9190501, Israel. ORCID
  2. Philippe Albouy: CERVO Brain Research Centre, Laval University, 2301 Av. D'Estimauville, Québec, G1V 0A6, Canada. ORCID
  3. Robert J Zatorre: Montreal Neurological Institute, McGill University, 3801, rue University Montreal, Québec, H3A 2B4, Canada. ORCID
  4. Merav Ahissar: The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem 9190401, Israel. ORCID

Abstract

In contrast to perceptual tasks, which enable concurrent processing of many stimuli, working memory (WM) tasks have a very small capacity, limiting cognitive skills. Training on WM tasks often yields substantial improvement, suggesting that training might increase the general WM capacity. To understand the underlying processes, we trained a test group with a newly designed tone manipulation WM task and a control group with a challenging perceptual task of pitch pattern discrimination. Functional magnetic resonance imaging (fMRI) scans confirmed that pretraining, manipulation was associated with a dorsal fronto-parietal WM network, while pitch comparison was associated with activation of ventral auditory regions. Training induced improvement in each group, which was limited to the trained task. Analyzing the behavior of the group trained with tone manipulation revealed that participants learned to replace active manipulation with a perceptual verification of the position of a single salient tone in the sequence presented as a tentative reply. Posttraining fMRI scans revealed modifications in ventral activation of both groups. Successful WMtrained participants learned to utilize auditory regions for the trained task. These observations suggest that the huge task-specific enhancement of WM capacity stems from a task-specific switch to perceptual routines, implemented in perceptual regions.

Keywords

References

  1. Front Neurosci. 2019 Oct 30;13:1165 [PMID: 31736698]
  2. Trends Cogn Sci. 2003 Dec;7(12):547-52 [PMID: 14643371]
  3. Psychol Sci. 2005 Dec;16(12):965-72 [PMID: 16313661]
  4. Trends Cogn Sci. 2007 Jun;11(6):236-42 [PMID: 17475538]
  5. Mem Cognit. 2004 Jun;32(4):648-61 [PMID: 15478759]
  6. Trends Cogn Sci. 2010 Jul;14(7):317-24 [PMID: 20630350]
  7. J Exp Psychol. 1958 Apr;55(4):352-8 [PMID: 13539317]
  8. Behav Brain Res. 2009 Dec 14;205(1):299-302 [PMID: 19712703]
  9. Neuroimage. 2017 Dec;163:398-412 [PMID: 28774646]
  10. J Exp Psychol. 1959 Sep;58:206-11 [PMID: 14419552]
  11. Hum Brain Mapp. 2019 Feb 15;40(3):855-867 [PMID: 30381866]
  12. Science. 2020 Feb 28;367(6481):1043-1047 [PMID: 32108113]
  13. Brain Res Cogn Brain Res. 1998 Jul;7(1):1-13 [PMID: 9714705]
  14. Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14837-42 [PMID: 17804811]
  15. Neuroimage. 2013 Jul 15;75:27-35 [PMID: 23470983]
  16. J Exp Psychol Gen. 2001 Jun;130(2):184-98 [PMID: 11409098]
  17. Mem Cognit. 2019 Jul;47(5):1012-1023 [PMID: 30815843]
  18. J Neurosci. 2016 Apr 20;36(16):4492-505 [PMID: 27098693]
  19. J Acoust Soc Am. 1971 Feb;49(2):Suppl 2:467+ [PMID: 5541744]
  20. J Cogn Neurosci. 1997 Fall;9(5):624-47 [PMID: 23965121]
  21. Perspect Psychol Sci. 2016 Jul;11(4):512-34 [PMID: 27474138]
  22. Trends Cogn Sci. 2004 Oct;8(10):457-64 [PMID: 15450510]
  23. Dev Psychol. 2013 Feb;49(2):270-91 [PMID: 22612437]
  24. Philos Trans R Soc Lond B Biol Sci. 2009 Feb 12;364(1515):285-99 [PMID: 18986968]
  25. Dev Sci. 2009 Jul;12(4):F9-15 [PMID: 19635074]
  26. J Neurosci. 2010 Mar 10;30(10):3849-56 [PMID: 20220020]
  27. J Cogn Neurosci. 2010 Apr;22(4):775-89 [PMID: 19366283]
  28. J Exp Psychol Hum Percept Perform. 2018 Mar;44(3):398-411 [PMID: 28816476]
  29. J Neurosci. 2011 Jul 13;31(28):10206-14 [PMID: 21752997]
  30. Memory. 2005 Apr-May;13(3-4):414-21 [PMID: 15948627]
  31. Trends Cogn Sci. 2003 Jul;7(7):293-299 [PMID: 12860187]
  32. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82 [PMID: 11209064]
  33. Behav Brain Sci. 2001 Feb;24(1):87-114; discussion 114-85 [PMID: 11515286]
  34. Hum Brain Mapp. 2014 May;35(5):2265-84 [PMID: 23900833]
  35. Trends Neurosci. 2000 Oct;23(10):475-83 [PMID: 11006464]
  36. J Mem Lang. 2016 Sep 12;105:19-42 [PMID: 31235992]
  37. J Cogn Neurosci. 2015 Jul;27(7):1308-21 [PMID: 25603023]
  38. Cereb Cortex. 2012 May;22(5):1086-97 [PMID: 21765184]
  39. Behav Res Methods. 2005 Aug;37(3):498-505 [PMID: 16405146]
  40. Front Neuroinform. 2015 Jan 06;8:88 [PMID: 25610393]
  41. Front Psychol. 2012 Dec 05;3:544 [PMID: 23227019]
  42. Neuroimage. 2010 Oct 15;53(1):26-36 [PMID: 20600982]
  43. Cereb Cortex. 2001 Oct;11(10):946-53 [PMID: 11549617]
  44. Brain. 2013 May;136(Pt 5):1639-61 [PMID: 23616587]
  45. Front Hum Neurosci. 2015 Feb 04;9:20 [PMID: 25698955]
  46. Neuron. 2017 Apr 5;94(1):193-206.e5 [PMID: 28343866]
  47. Science. 2000 Jul 21;289(5478):457-60 [PMID: 10903207]
  48. Sci Rep. 2018 Mar 6;8(1):4045 [PMID: 29511316]
  49. Psychon Bull Rev. 2021 Apr;28(2):526-536 [PMID: 33063180]
  50. Psychol Bull. 2012 Jul;138(4):628-654 [PMID: 22409508]
  51. Ann N Y Acad Sci. 2008 Mar;1124:1-38 [PMID: 18400922]
  52. Neuroimage. 1995 Mar;2(1):45-53 [PMID: 9343589]
  53. J Exp Psychol Gen. 2019 Nov;148(11):1953-1971 [PMID: 30843719]
  54. Cereb Cortex. 1998 Oct-Nov;8(7):593-601 [PMID: 9823480]
  55. Psychon Bull Rev. 2007 Oct;14(5):913-8 [PMID: 18087959]

Grants

  1. /CIHR

MeSH Term

Humans
Learning
Memory, Short-Term
Magnetic Resonance Imaging

Word Cloud

Created with Highcharts 10.0.0perceptualWMmanipulationtrainedgrouptasktaskscapacityTrainingtonepitchfMRIregionsprocessingstimuliimprovementpatterndiscriminationscansassociatedactivationventralauditoryrevealedparticipantslearnedtask-specificcontrastenableconcurrentmanyworkingmemorysmalllimitingcognitiveskillsoftenyieldssubstantialsuggestingtrainingmightincreasegeneralunderstandunderlyingprocessestestnewlydesignedcontrolchallengingFunctionalmagneticresonanceimagingconfirmedpretrainingdorsalfronto-parietalnetworkcomparisoninducedlimitedAnalyzingbehaviorreplaceactiveverificationpositionsinglesalientsequencepresentedtentativereplyPosttrainingmodificationsgroupsSuccessfulWMtrainedutilizeobservationssuggesthugeenhancementstemsswitchroutinesimplementedallowsswitchinglimited-capacitymanipulationslarge-capacityfrequencylearning

Similar Articles

Cited By