Co-assembly of charge complementary peptides and their applications as organic dye/heavy metal ion (Pb, Hg) absorbents and arsenic(iii/v) detectors.

Karabi Roy, Monikha Chetia, Ankan Kumar Sarkar, Sunanda Chatterjee
Author Information
  1. Karabi Roy: Department of Chemistry, Indian Institute of Technology Guwahati Guwahati Assam 781039 India sunanda.c@iitg.ac.in +91-361-2583310.
  2. Monikha Chetia: Department of Chemistry, Indian Institute of Technology Guwahati Guwahati Assam 781039 India sunanda.c@iitg.ac.in +91-361-2583310.
  3. Ankan Kumar Sarkar: Department of Chemistry, Indian Institute of Technology Guwahati Guwahati Assam 781039 India sunanda.c@iitg.ac.in +91-361-2583310.
  4. Sunanda Chatterjee: Department of Chemistry, Indian Institute of Technology Guwahati Guwahati Assam 781039 India sunanda.c@iitg.ac.in +91-361-2583310. ORCID

Abstract

Learning from nature, molecular self-assembly has been used extensively to generate interesting materials using a bottom up approach. The enthusiasm in this field of research stems from the unique properties of these materials and their diverse applications. The field has not been limited to studying assembly of similar types of molecules but extended to multi component systems the co-assembly phenomenon. We have designed two charge complementary peptides to study their co-assembly in mechanistic detail in the present work. The cooperative self-assembly is mainly driven by electrostatic interaction that is aided by aromatic interactions, hydrogen bonding interactions and hydrophobic interactions. The hydrogels obtained have been employed in waste water remediation. Both the self-assembled and co-assembled hydrogels are capable of removal of different kinds of organic dyes (cationic, anionic and neutral) and toxic metal ions (Ni, Co, Pb and Hg) individually and as a mixture from water with high efficiency. Additionally, the peptides developed in this study can act as ion sensors and detect arsenic in its most toxic (III/V) oxidation states. Molecular understanding of the assembly process is of fundamental importance in the rational design of such simple, robust yet economically viable materials with versatile and novel applications.

References

  1. Nanoscale. 2019 Sep 21;11(35):16534-16543 [PMID: 31455952]
  2. Biomacromolecules. 2014 Apr 14;15(4):1171-84 [PMID: 24568678]
  3. Chem Commun (Camb). 2019 Apr 9;55(30):4411-4414 [PMID: 30916078]
  4. Nature. 2011 Apr 14;472(7342):152-4 [PMID: 21490648]
  5. J Am Chem Soc. 2012 Mar 28;134(12):5556-9 [PMID: 22420540]
  6. J Am Chem Soc. 2016 Oct 26;138(42):13891-13900 [PMID: 27642763]
  7. Chem Rev. 2016 Sep 28;116(18):11220-89 [PMID: 27552640]
  8. J Am Chem Soc. 2016 Mar 16;138(10):3579-86 [PMID: 26942690]
  9. Chem Commun (Camb). 2017 Aug 24;53(69):9586-9589 [PMID: 28808707]
  10. J Am Chem Soc. 2020 Jan 29;142(4):2042-2050 [PMID: 31935077]
  11. J Am Chem Soc. 2011 Sep 28;133(38):14975-7 [PMID: 21863803]
  12. J Am Chem Soc. 2009 Sep 9;131(35):12520-1 [PMID: 19678637]
  13. ACS Appl Bio Mater. 2020 Sep 21;3(9):6251-6262 [PMID: 35021757]
  14. J Am Chem Soc. 2014 Dec 31;136(52):17902-5 [PMID: 25389763]
  15. Angew Chem Int Ed Engl. 2014 Feb 24;53(9):2366-70 [PMID: 24482003]
  16. Langmuir. 2011 Sep 6;27(17):11145-56 [PMID: 21815693]
  17. Chem Soc Rev. 2018 May 21;47(10):3406-3420 [PMID: 29498728]
  18. Nat Commun. 2013;4:1480 [PMID: 23403581]
  19. J Phys Chem B. 2010 Feb 25;114(7):2365-72 [PMID: 20166681]
  20. Biochem Soc Trans. 2007 Jun;35(Pt 3):535-7 [PMID: 17511646]
  21. Soft Matter. 2016 Nov 28;12(47):9451-9457 [PMID: 27841428]
  22. J Am Chem Soc. 2017 Jun 14;139(23):7823-7830 [PMID: 28571316]
  23. Chem Soc Rev. 2014;43(20):6881-93 [PMID: 25099656]
  24. J Mater Chem B. 2014 May 7;2(17):2583-2591 [PMID: 32261425]
  25. J Mater Chem B. 2013 May 7;1(17):2297-2304 [PMID: 32260883]
  26. Talanta. 2018 Jan 15;177:212-216 [PMID: 29108578]
  27. Chem Commun (Camb). 2017 May 30;53(43):5910-5913 [PMID: 28513651]
  28. Sci Technol Adv Mater. 2019 Jan 31;20(1):51-95 [PMID: 30787960]
  29. Proc Natl Acad Sci U S A. 2002 Apr 16;99(8):4769-74 [PMID: 11959929]
  30. ACS Nano. 2016 Aug 23;10(8):7436-42 [PMID: 27351519]
  31. Interface Focus. 2017 Dec 6;7(6):20170028 [PMID: 29147558]
  32. Langmuir. 2020 Jun 9;36(22):6261-6267 [PMID: 32418429]
  33. Org Biomol Chem. 2017 Jul 19;15(28):5867-5876 [PMID: 28661532]
  34. Org Biomol Chem. 2014 Jun 14;12(22):3544-61 [PMID: 24756480]
  35. Science. 1991 Nov 29;254(5036):1312-9 [PMID: 1962191]
  36. J Am Chem Soc. 2005 Feb 2;127(4):1193-200 [PMID: 15669858]
  37. ACS Nano. 2017 Jul 25;11(7):6881-6892 [PMID: 28679051]
  38. Nat Chem. 2015 Nov;7(11):897-904 [PMID: 26492010]

Word Cloud

Created with Highcharts 10.0.0materialsapplicationspeptidesinteractionsself-assemblyfieldassemblyco-assemblychargecomplementarystudyhydrogelswaterorganictoxicmetalPbHgionarsenicLearningnaturemolecularusedextensivelygenerateinterestingusingbottomapproachenthusiasmresearchstemsuniquepropertiesdiverselimitedstudyingsimilartypesmoleculesextendedmulticomponentsystemsphenomenondesignedtwomechanisticdetailpresentworkcooperativemainlydrivenelectrostaticinteractionaidedaromatichydrogenbondinghydrophobicobtainedemployedwasteremediationself-assembledco-assembledcapableremovaldifferentkindsdyescationicanionicneutralionsNiCoindividuallymixturehighefficiencyAdditionallydevelopedcanactsensorsdetectIII/VoxidationstatesMolecularunderstandingprocessfundamentalimportancerationaldesignsimplerobustyeteconomicallyviableversatilenovelCo-assemblydye/heavyabsorbentsiii/vdetectors

Similar Articles

Cited By