Effect of tryptophan residues on gold mineralization by a gold reducing peptide.

Makoto Ozaki, Shuhei Yoshida, Maho Oura, Takaaki Tsuruoka, Kenji Usui
Author Information
  1. Makoto Ozaki: Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University Kobe Japan kusui@konan-u.ac.jp.
  2. Shuhei Yoshida: Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University Kobe Japan kusui@konan-u.ac.jp.
  3. Maho Oura: Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University Kobe Japan kusui@konan-u.ac.jp.
  4. Takaaki Tsuruoka: Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University Kobe Japan kusui@konan-u.ac.jp. ORCID
  5. Kenji Usui: Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University Kobe Japan kusui@konan-u.ac.jp. ORCID

Abstract

AuBP1, obtained by phage display selection, was previously shown to produce gold nanoparticles without reducing agents. The tryptophan (Trp) residue located at the N-terminus of this peptide contributes to the reduction of Au to Au and is involved in the nucleation and crystal growth of gold nanoparticles. However, clear guidelines for relationships between the number of Trp residues in the peptide and its gold reducing ability have not been established. We focused on gold mineralization and attempted to elucidate aspects of the underlying mechanism. We performed a detailed evaluation of the effects of modifying the N-terminus of the core sequence on gold mineralization without reducing agents. Besides, advantages of utilizing peptides in manufacturing gold nanoparticles are shown. UV-Vis measurements, TEM observations, and kinetic analyses were used to show that increasing the number of Trp residues in the peptide increases the reducing ability, causing predominance of the nucleation reaction and the production of small gold nanoparticles. In addition, these peptides also had the ability as a dispersant to protect the surface of gold nanoparticles. Furthermore, the catalytic activity of mineralized gold nanoparticles with peptides was higher than that of a commercial gold nanoparticle. This study should help to elucidate the relationship between peptide sequence and mineralization ability for use in materials chemistry.

References

  1. Science. 1991 Dec 6;254(5037):1497-500 [PMID: 1962210]
  2. J Am Chem Soc. 2019 Oct 2;141(39):15710-15716 [PMID: 31487169]
  3. Materials (Basel). 2017 Nov 30;10(12): [PMID: 29189739]
  4. Chem Commun (Camb). 2014 Aug 25;50(66):9259-62 [PMID: 24963622]
  5. Chem Commun (Camb). 2016 Mar 14;52(21):4010-3 [PMID: 26690695]
  6. Langmuir. 2014 Jan 28;30(3):846-56 [PMID: 24432735]
  7. Chem Soc Rev. 2015 May 7;44(9):2615-28 [PMID: 25877687]
  8. Chem Rev. 2012 May 9;112(5):2739-79 [PMID: 22295941]
  9. Nanoscale. 2016 Oct 21;8(39):17081-17084 [PMID: 27550384]
  10. Molecules. 2017 Nov 16;22(11): [PMID: 29144399]
  11. Langmuir. 2006 Aug 29;22(18):7712-8 [PMID: 16922554]
  12. Chem Rev. 2011 May 11;111(5):3433-58 [PMID: 21395328]
  13. Protein Pept Lett. 2018;25(1):15-24 [PMID: 29237367]
  14. Chemistry. 2007;13(11):3160-8 [PMID: 17245786]
  15. Org Biomol Chem. 2015 Jan 28;13(4):974-89 [PMID: 25375353]
  16. Adv Mater. 2012 Sep 18;24(36):4811-41, 5014 [PMID: 22740090]
  17. J Am Chem Soc. 2010 Aug 18;132(32):11018-20 [PMID: 20698662]
  18. Chem Rev. 2018 Mar 28;118(6):2955-2993 [PMID: 28737382]
  19. Org Biomol Chem. 2015 Feb 21;13(7):2022-5 [PMID: 25519192]
  20. Chem Soc Rev. 2013 Apr 7;42(7):2512-27 [PMID: 23079759]
  21. Langmuir. 2017 Dec 5;33(48):13757-13765 [PMID: 29091728]
  22. Chem Soc Rev. 2011 Sep;40(9):4506-24 [PMID: 21607235]
  23. J Am Chem Soc. 2010 Apr 28;132(16):5677-86 [PMID: 20355728]
  24. Chem Soc Rev. 2019 Mar 18;48(6):1668-1711 [PMID: 30484794]
  25. Nat Commun. 2018 Jun 13;9(1):2327 [PMID: 29899378]
  26. Molecules. 2013 Oct 11;18(10):12609-20 [PMID: 24126378]
  27. Chem Rev. 2008 Nov;108(11):4935-78 [PMID: 18973389]
  28. Chem Soc Rev. 2008 Nov;37(11):2403-12 [PMID: 18949113]
  29. Angew Chem Int Ed Engl. 2012 Apr 23;51(17):4231-4 [PMID: 22213611]
  30. Angew Chem Int Ed Engl. 2010 Mar 8;49(11):1924-42 [PMID: 20183835]
  31. Sci Rep. 2018 Mar 15;8(1):4589 [PMID: 29545580]
  32. Protein Pept Lett. 2018;25(1):42-47 [PMID: 29268680]

Word Cloud

Created with Highcharts 10.0.0goldnanoparticlesreducingpeptideabilitymineralizationTrpresiduespeptidesshownwithoutagentstryptophanN-terminusAunucleationnumberelucidatesequenceAuBP1obtainedphagedisplayselectionpreviouslyproduceresiduelocatedcontributesreductioninvolvedcrystalgrowthHoweverclearguidelinesrelationshipsestablishedfocusedattemptedaspectsunderlyingmechanismperformeddetailedevaluationeffectsmodifyingcoreBesidesadvantagesutilizingmanufacturingUV-VismeasurementsTEMobservationskineticanalysesusedshowincreasingincreasescausingpredominancereactionproductionsmalladditionalsodispersantprotectsurfaceFurthermorecatalyticactivitymineralizedhighercommercialnanoparticlestudyhelprelationshipusematerialschemistryEffect

Similar Articles

Cited By