The 2019-2020 volcanic eruption of Late'iki (Metis Shoal), Tonga.

I A Yeo, I M McIntosh, S E Bryan, K Tani, M Dunbabin, D Metz, P C Collins, K Stone, M S Manu
Author Information
  1. I A Yeo: National Oceanography Centre Southampton, Southampton, UK. i.yeo@noc.ac.uk.
  2. I M McIntosh: Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Tokyo, Japan.
  3. S E Bryan: School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, Australia.
  4. K Tani: National Museum of Nature and Science (Kahaku), Tokyo, Japan.
  5. M Dunbabin: School of Electrical Engineering and Robotics, Queensland University of Technology, Brisbane, Australia.
  6. D Metz: Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Tokyo, Japan.
  7. P C Collins: Queens University Belfast, Belfast, UK.
  8. K Stone: Vava'u Environmental Protection Association (VEPA), Vava'u, Tonga.
  9. M S Manu: Natural Resources Division, Tonga Ministry of Lands, Survey and Natural Resources, Nuku'alofa, Tonga.

Abstract

Late'iki (previously known as Metis Shoal) is a highly active volcano in the Tofua arc with at least four temporary island-building eruptions and one submarine eruption in the last 55 years. The most recent eruption, commencing in October 2019, resulted in lava effusion and subsequent phreatic explosions, the construction of a short-lived island that was quickly eroded by wave action and possibly further phreatic activity that continued into January 2020. The two-pyroxene dacite from the 2019 eruption is similar to the 1967/8 eruptions suggesting the magma is residual from earlier eruptions and has not undergone further differentiation in the last 50 years. New observations of the 2019 eruption site confirm the lava-dominant character of the volcano summit but a thin veneer of wave-reworked, finely fragmented lava material remains that is interpreted to have been produced by phreatic explosions from hot rock-water interactions during the effusive eruption. A notable absence of quench-fragmented hyaloclastite breccias suggests that non-explosive quench fragmentation processes were minimal at these shallow depths or that hyaloclastite debris has resedimented to greater depths beyond our summit survey area.

References

  1. Bryan, W. B., Stice, G. D. & Ewart, A. Geology, petrography, and geochemistry of the volcanic islands of Tonga. J. Geophys. Res. 77, 1566–1585 (1972). [DOI: 10.1029/JB077i008p01566]
  2. Ewart, A., Bryan, W. B. & Gill, J. B. Mineralogy and Geochemistry of the Younger Volcanic Islands of Tonga, SW Pacific. J. Petrol. 14, 429–465 (1973). [DOI: 10.1093/petrology/14.3.429]
  3. Turner, S. et al. Magma evolution in the primitive, intra-oceanic Tonga arc: Rapid petrogenesis of dacites at Fonualei volcano. J. Petrol. 53, 1231–1253 (2012). [DOI: 10.1093/petrology/egs005]
  4. Beier, C. et al. Trace element and isotope geochemistry of the northern and central Tongan islands with an emphasis on the genesis of high Nb/Ta signatures at the northern volcanoes of Tafahi and Niuatoputapu. J. Petrol. 58, 1073–1106 (2017). [DOI: 10.1093/petrology/egx047]
  5. Ewart, A. A petrological study of the younger Tongan andesites and dacites, and the olivine tholeiites of Niua Fo’ou Island, SW Pacific. Contrib. Mineral. Petrol. 58, 1–21 (1976). [DOI: 10.1007/BF00384740]
  6. Bryan, W. B. Low-potash dacite drift pumice from the Coral Sea. Geol. Mag. 105, 431–439 (1968). [DOI: 10.1017/S0016756800054819]
  7. Lacroix, A. Composition mineralogique et chimique des lavee des volcans des iles de l’ocean Pacifique situees entre l’Equataur et le tropique du Capricarne, le 175° de longitude ouest et le 165° de longitude est. Mem. Acad. Sci. Paris 63, 1–97 (1939).
  8. Bryan, S. E. et al. Pumice rafting and faunal dispersion during 2001–2002 in the Southwest Pacific: Record of a dacitic submarine explosive eruption from Tonga. Earth Planet. Sci. Lett. 227, 135–154 (2004). [DOI: 10.1016/j.epsl.2004.08.009]
  9. Brandl, P. A. et al. The 6–8 Aug 2019 eruption of ‘Volcano F’ in the Tofua Arc, Tonga. J. Volcanol. Geotherm. Res. 390, 106695 (2020). [DOI: 10.1016/j.jvolgeores.2019.106695]
  10. Graham, I. J. et al. Structure and petrology of newly discovered volcanic centers in the northern Kermadec–southern Tofua arc, South Pacific Ocean. J. Geophys. Res. Solid Earth 113, 25 (2008). [DOI: 10.1029/2007JB005453]
  11. Venzke, E. Global volcanism program. Volc. World https://doi.org/10.5479/si.GVP.VOTW4-2013 (2013). [DOI: 10.5479/si.GVP.VOTW4-2013]
  12. Taylor, P. W. Unreported submarine activity at Metis Shoal, June 1991 and the risk from future activity. Aust. Volcanol. Investig. Occassiona, 10 (2005).
  13. Bryan, S. E. et al. Rapid, long-distance dispersal by pumice rafting. PLoS One 7, e40583–e40583 (2012). [PMID: 22815770]
  14. Jutzeler, M. et al. Ongoing dispersal of the 7 August 2019 Pumice Raft from the Tonga Arc in the Southwestern Pacific Ocean. Geophys. Res. Lett. 47, 1–3 (2020). [DOI: 10.1029/2019GL086768]
  15. Melson, W. G., Jarosewich, E. & Lundquist, C. A. Volcanic Eruption at Metis Shoal, Tonga, 1967–1968: Description and petrology. Smithson. Contrib. Earth Sci. https://doi.org/10.5479/si.00810274.4.1 (1970). [DOI: 10.5479/si.00810274.4.1]
  16. Plank, S., Marchese, F., Genzano, N., Nolde, M. & Martinis, S. The short life of the volcanic island New Late’iki (Tonga) analyzed by multi-sensor remote sensing data. Sci. Rep. 10, 22293 (2020). [PMID: 33339885]
  17. Scott, B. J. Metis Shoal Eruption June 1995: Summary of a Reconnaissance Visit. Inst. Geol. Nucl. Sci. Client Report. No 71415D.15A. (1995).
  18. Smithsonian Institution. Information Report 1/1a (CSLP 02-67). Smithson./US Geol. Surv. Volcan. Bull. Reports (1968).
  19. Houghton, B. F. & Wilson, C. J. N. A vesicularity index for pyroclastic deposits. Bull. Volcanol. 51, 451–462 (1989). [DOI: 10.1007/BF01078811]
  20. Global Volcanism Program. Report on Lateiki (Tonga). Bull. Glob. Volcanism Netw. 45, 25 (2020).
  21. Woodhall, D. Cruise of the RV Balikula to investigate recent volcanic activity in Tonga, July 11–18, 1979. Fiji Minist. Lands Miner. Resour. Miner. Resour. Div. Rep. 14, 13 (2006).
  22. Smithsonian Institution. Information report June 1979 (SEAN:07). Smithson./US Geol. Surv. Volcan. Bull. Reports (1979).
  23. Smithsonian Institution. Information report October 1979 (SEAN 04:10). Smithson./US Geol. Surv. Volcan. Bull. Reports (1979).
  24. Smithsonian Institution. Information report June 1995 (BGVN 20:06). Smithson./US Geol. Surv. Volcan. Bull. Reports (1995).
  25. Turner, S. & Hawkesworth, C. Constraints on flux rates and mantle dynamics beneath island arcs from Tonga-Kermadec lava geochemistry. Nature 389, 568–573 (1997). [DOI: 10.1038/39257]
  26. Ewart, A., Bryan, W. B., Chappell, B. W. & Rudnick, R. L. Regional geochemistry of the Lau-Tonga arc and backarc systems. Proc. Ocean Drill. Program Sci. Results https://doi.org/10.2973/odp.proc.sr.135.141.1994 (1994). [DOI: 10.2973/odp.proc.sr.135.141.1994]
  27. Ewart, A., Brothers, R. N. & Mateen, A. An outline of the geology and geochemistry, and the possible petrogenetic evolution of the volcanic rocks of the Tonga-Kermadec-New Zealand island arc. J. Volcanol. Geotherm. Res. 2, 205–250 (1977). [DOI: 10.1016/0377-0273(77)90001-4]
  28. Pallister, J. S., Hoblitt, R. P. & Reyes, A. G. A basalt trigger for the 1991 eruptions of Pinatubo volcano?. Nature 356, 426–428 (1992). [DOI: 10.1038/356426a0]
  29. Stolper, E. The speciation of water in silicate melts. Geochim. Cosmochim. Acta 46, 2609–2620 (1982). [DOI: 10.1016/0016-7037(82)90381-7]
  30. Stolper, E. Temperature dependence of the speciation of water in rhyolitic melts and glasses. Am. Mineral. 74, 1247–1257 (1989).
  31. Newman, S., Macdougall, J. D. & Finkel, R. C. Petrogenesis and 230 Th-238 U disequilibrium at Mt Shasta, California, and in the Cascades. Contrib. Mineral. Petrol. 93, 195–206 (1986). [DOI: 10.1007/BF00371321]
  32. Newman, S. & Lowenstern, J. B. VolatileCalc: A silicate melt–HO–CO solution model written in Visual Basic for excel. Comput. Geosci. 28, 597–604 (2002). [DOI: 10.1016/S0098-3004(01)00081-4]
  33. Liu, Y., Zhang, Y. & Behrens, H. Solubility of HO in rhyolitic melts at low pressures and a new empirical model for mixed HO–CO solubility in rhyolitic melts. J. Volcanol. Geotherm. Res. 143, 219–235 (2005). [DOI: 10.1016/j.jvolgeores.2004.09.019]
  34. Giachetti, T. & Gonnermann, H. M. Water in volcanic pyroclast: Rehydration or incomplete degassing?. Earth Planet. Sci. Lett. 369, 317–332 (2013). [DOI: 10.1016/j.epsl.2013.03.041]
  35. McIntosh, I. M., Nichols, A. R. L., Tani, K. & Llewellin, E. W. Accounting for the species-dependence of the 3500 cm HOt infrared molar absorptivity coefficient: Implications for hydrated volcanic glasses. Am. Mineral. J. Earth Planet. Mater. 102, 1677–1689 (2017). [DOI: 10.2138/am-2017-5952CCBY]
  36. Anovitz, L. M., Labotka, T. C., Blencoe, J. G. & Horita, J. Experimental determination of the activity-composition relations and phase equilibria of HO-CO-NaCl fluids at 500°C, 500 bars 1 1Associate editor: D. A. Sverjensky. Geochim. Cosmochim. Acta 68, 3557–3567 (2004). [DOI: 10.1016/j.gca.2003.12.012]
  37. Ni, H. & Zhang, Y. HO diffusion models in rhyolitic melt with new high pressure data. Chem. Geol. 250, 68–78 (2008). [DOI: 10.1016/j.chemgeo.2008.02.011]
  38. Newhall, C. G. & Self, S. The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. J. Geophys. Res. Ocean. 87, 1231–1238 (1982). [DOI: 10.1029/JC087iC02p01231]
  39. Fiske, R. S., Cashman, K. V., Shibata, A. & Watanabe, K. Tephra dispersal from Myojinsho, Japan, during its shallow submarine eruption of 1952–1953. Bull. Volcanol. 59, 262–275 (1998). [DOI: 10.1007/s004450050190]
  40. Girona, T., Costa, F., Newhall, C. & Taisne, B. On depressurization of volcanic magma reservoirs by passive degassing. J. Geophys. Res. Solid Earth 119, 8667–8687 (2014). [DOI: 10.1002/2014JB011368]
  41. Pioli, L., Azzopardi, B. J. & Cashman, K. V. Controls on the explosivity of scoria cone eruptions: Magma segregation at conduit junctions. J. Volcanol. Geotherm. Res. 186, 407–415 (2009). [DOI: 10.1016/j.jvolgeores.2009.07.014]
  42. Cassidy, M. et al. Construction of volcanic records from marine sediment cores: A review and case study (Montserrat, West Indies). Earth Sci. Rev. 138, 137–155 (2014). [DOI: 10.1016/j.earscirev.2014.08.008]
  43. Smirnov, S. Z. et al. High explosivity of the June 21, 2019 eruption of Raikoke volcano (Central Kuril Islands); mineralogical and petrological constraints on the pyroclastic materials. J. Volcanol. Geotherm. Res. 418, 107346 (2021). [DOI: 10.1016/j.jvolgeores.2021.107346]
  44. Heap, M. J. et al. Hydrothermal alteration of andesitic lava domes can lead to explosive volcanic behaviour. Nat. Commun. 10, 5063 (2019). [PMID: 31700076]
  45. Matthews, S. J., Gardeweg, M. C. & Sparks, R. S. J. The 1984 to 1996 cyclic activity of Lascar Volcano, northern Chile: Cycles of dome growth, dome subsidence, degassing and explosive eruptions. Bull. Volcanol. 59, 72–82 (1997). [DOI: 10.1007/s004450050176]
  46. Bachmann, O. & Huber, C. Silicic magma reservoirs in the Earth’s crust. Am. Mineral. 101, 2377–2404 (2016). [DOI: 10.2138/am-2016-5675]
  47. Cashman, K. V., Sparks, R. S. J. & Blundy, J. D. Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science (80) 355, 25 (2017).
  48. Yuasa, M. & Kano, K. Submarine Silicic Calderas on the Northern Shichito-Iwojima Ridge, Izu-Ogasawara (Bonin) Arc, Western Pacific. Explos. Subaqueous Volcanism 20, 231–243. https://doi.org/10.1029/140GM15 (2003). [DOI: 10.1029/140GM15]
  49. Stewart, A. L. & McPhie, J. Facies architecture and Late Pliocene-Pleistocene evolution of a felsic volcanic island, Milos, Greece. Bull. Volcanol. 68, 703–726 (2006). [DOI: 10.1007/s00445-005-0045-2]
  50. White, J. D. L., McPhie, J. & Soule, S. A. Submarine lavas and hyaloclastite. In The Encyclopedia of Volcanoes 363–375 (Elsevier, 2015). [DOI: 10.1016/B978-0-12-385938-9.00019-5]
  51. Soriano, C., Riggs, N., Giordano, G., Porreca, M. & Conticelli, S. Cyclic growth and mass wasting of submarine Los Frailes lava flow and dome complex in Cabo de Gata, SE Spain. J. Volcanol. Geotherm. Res. 231, 72–86 (2012). [DOI: 10.1016/j.jvolgeores.2012.04.015]
  52. Allen, S. R., Fiske, R. S. & Tamura, Y. Effects of water depth on pumice formation in submarine domes at Sumisu, Izu-Bonin arc, western Pacific. Geology 38, 391–394 (2010). [DOI: 10.1130/G30500.1]
  53. DigitalGlobe. WorldView-3: DigitalGlobe. http://worldview3.digitalglobe.com/ .
  54. QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.org (2020).
  55. Dunbabin, M., Dayoub, F., Lamont, R. & Martin, S. Real-time vision-only perception for robotic coral reef monitoring and management. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation (2019).
  56. Sano, T., Tani, K. & Murch, A. P. Major and trace element analyses of igneous rocks and sediments by Xray fluorescence spectrometry using glass bead and pressed powder pellet. Bull. Natl. Mus. Nat. Sci., Ser. C 46, 1–14 (2020).
  57. Mitchell, S. J., McIntosh, I. M., Houghton, B. F., Carey, R. J. & Shea, T. Dynamics of a powerful deep submarine eruption recorded in HO contents and speciation in rhyolitic glass: The 2012 Havre eruption. Earth Planet. Sci. Lett. 494, 135–147 (2018). [DOI: 10.1016/j.epsl.2018.04.053]
  58. Centenary Edition of the GEBCO Digital Atlas. Intergov. Oceanogr. Comm. Int. Hydrogr. Organ. Gen. Bathymetr. Chart Ocean. (2003).
  59. Copernicus Sentinel data. Retrieved from ASF DAAC [1st August 2020], Process. by ESA. (2019).
  60. Ryan, W. B. F. et al. Global multi-resolution topography synthesis. Geochem. Geophys. Geosyst. 10, 25 (2009). [DOI: 10.1029/2008GC002332]
  61. Morimoto, N. Nomenclature of pyroxenes. Mineral. Petrol. 39, 55–76 (1988). [DOI: 10.1007/BF01226262]
  62. Reagan, M. et al. 210 Pb-226 Ra disequilibria in young gas-laden magmas. Sci. Rep. 7, 1–12 (2017). [DOI: 10.1038/srep45186]

MeSH Term

Disasters
Minerals
Tonga
Volcanic Eruptions

Chemicals

Minerals

Word Cloud

Created with Highcharts 10.0.0eruptioneruptions2019phreaticLate'ikiMetisShoalvolcanolastlavaexplosionssummithyaloclastitedepthspreviouslyknownhighlyactiveTofuaarcleastfourtemporaryisland-buildingonesubmarine55 yearsrecentcommencingOctoberresultedeffusionsubsequentconstructionshort-livedislandquicklyerodedwaveactionpossiblyactivitycontinuedJanuary2020two-pyroxenedacitesimilar1967/8suggestingmagmaresidualearlierundergonedifferentiation50 yearsNewobservationssiteconfirmlava-dominantcharacterthinveneerwave-reworkedfinelyfragmentedmaterialremainsinterpretedproducedhotrock-waterinteractionseffusivenotableabsencequench-fragmentedbrecciassuggestsnon-explosivequenchfragmentationprocessesminimalshallowdebrisresedimentedgreaterbeyondsurveyarea2019-2020volcanicTonga

Similar Articles

Cited By