Modelling the acclimation capacity of coral reefs to a warming ocean.

Nomenjanahary Alexia Raharinirina, Esteban Acevedo-Trejos, Agostino Merico
Author Information
  1. Nomenjanahary Alexia Raharinirina: Department of Integrated Modelling, Leibniz Centre for Tropical Marine Research, Bremen, Germany. ORCID
  2. Esteban Acevedo-Trejos: Department of Integrated Modelling, Leibniz Centre for Tropical Marine Research, Bremen, Germany. ORCID
  3. Agostino Merico: Department of Integrated Modelling, Leibniz Centre for Tropical Marine Research, Bremen, Germany. ORCID

Abstract

The symbiotic relationship between corals and photosynthetic algae is the foundation of coral reef ecosystems. This relationship breaks down, leading to coral death, when sea temperature exceeds the thermal tolerance of the coral-algae complex. While acclimation via phenotypic plasticity at the organismal level is an important mechanism for corals to cope with global warming, community-based shifts in response to acclimating capacities may give valuable indications about the future of corals at a regional scale. Reliable regional-scale predictions, however, are hampered by uncertainties on the speed with which coral communities will be able to acclimate. Here we present a trait-based, acclimation dynamics model, which we use in combination with observational data, to provide a first, crude estimate of the speed of coral acclimation at the community level and to investigate the effects of different global warming scenarios on three iconic reef ecosystems of the tropics: Great Barrier Reef, South East Asia, and Caribbean. The model predicts that coral acclimation may confer some level of protection by delaying the decline of some reefs such as the Great Barrier Reef. However, the current rates of acclimation will not be sufficient to rescue corals from global warming. Based on our estimates of coral acclimation capacities, the model results suggest substantial declines in coral abundances in all three regions, ranging from 12% to 55%, depending on the region and on the climate change scenario considered. Our results highlight the importance and urgency of precise assessments and quantitative estimates, for example through laboratory experiments, of the natural acclimation capacity of corals and of the speed with which corals may be able to acclimate to global warming.

References

  1. J Theor Biol. 2009 Jul 7;259(1):44-57 [PMID: 19285512]
  2. J Theor Biol. 2017 Oct 27;431:49-62 [PMID: 28782552]
  3. Science. 2001 Oct 12;294(5541):321-6 [PMID: 11598291]
  4. Sci Rep. 2016 Dec 06;6:38402 [PMID: 27922080]
  5. Sci Rep. 2017 Jul 10;7(1):4937 [PMID: 28694432]
  6. Ecology. 2013 Aug;94(8):1871-7 [PMID: 24015530]
  7. Science. 2014 May 23;344(6186):895-8 [PMID: 24762535]
  8. Sci Rep. 2019 Mar 6;9(1):3721 [PMID: 30842480]
  9. Sci Adv. 2017 Nov 01;3(11):e1701413 [PMID: 29109975]
  10. Glob Chang Biol. 2020 Oct;26(10):5646-5660 [PMID: 32713061]
  11. PLoS One. 2007 Aug 08;2(8):e711 [PMID: 17684557]
  12. Cell Stress Chaperones. 2009 Sep;14(5):469-76 [PMID: 19214783]
  13. Trends Ecol Evol. 1989 Nov;4(11):350-2 [PMID: 21227377]
  14. Mar Pollut Bull. 2005 Feb;50(2):125-46 [PMID: 15737355]
  15. Nature. 2006 Apr 27;440(7088):1186-9 [PMID: 16641995]
  16. Compr Physiol. 2012 Apr;2(2):1417-39 [PMID: 23798305]
  17. Nat Commun. 2019 Mar 20;10(1):1264 [PMID: 30894534]
  18. Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):607-12 [PMID: 25548188]
  19. PLoS One. 2009 Jun 03;4(6):e5712 [PMID: 19492060]
  20. Ecol Lett. 2013 Aug;16(8):1095-103 [PMID: 23800223]
  21. Science. 2007 Dec 14;318(5857):1737-42 [PMID: 18079392]
  22. Glob Chang Biol. 2014 Jan;20(1):125-39 [PMID: 24038982]
  23. J Exp Biol. 2010 Mar 15;213(6):934-45 [PMID: 20190118]
  24. Curr Biol. 2015 Feb 16;25(4):500-5 [PMID: 25639239]
  25. Science. 1978 Mar 24;199(4335):1302-10 [PMID: 17840770]
  26. Ecol Appl. 2009 Jan;19(1):3-17 [PMID: 19323170]
  27. Evol Appl. 2014 Jan;7(1):104-22 [PMID: 24454551]
  28. Proc Natl Acad Sci U S A. 2021 Feb 2;118(5): [PMID: 33500354]
  29. Trends Ecol Evol. 1991 Jun;6(6):175-9 [PMID: 21232450]
  30. Plant Cell Environ. 2008 May;31(5):679-94 [PMID: 18315536]
  31. PLoS One. 2015 Jun 01;10(6):e0128831 [PMID: 26030287]
  32. Science. 1999 Feb 5;283(5403):843-5 [PMID: 9933167]
  33. Proc Biol Sci. 2006 Sep 22;273(1599):2305-12 [PMID: 16928632]
  34. Science. 2013 Apr 5;340(6128):34-5 [PMID: 23559236]
  35. Science. 2011 Jul 22;333(6041):418-22 [PMID: 21778392]
  36. Ann Rev Mar Sci. 2020 Jan 3;12:153-179 [PMID: 31505130]
  37. Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17995-9 [PMID: 23027961]
  38. Nature. 2011 Feb 24;470(7335):479-85 [PMID: 21350480]

MeSH Term

Acclimatization
Animals
Anthozoa
Coral Reefs
Ecosystem
Oceans and Seas

Word Cloud

Created with Highcharts 10.0.0coralacclimationcoralswarminggloballevelmayspeedmodelrelationshipreefecosystemscapacitieswillableacclimatethreeGreatBarrierReefreefsestimatesresultscapacitysymbioticphotosyntheticalgaefoundationbreaksleadingdeathseatemperatureexceedsthermaltolerancecoral-algaecomplexviaphenotypicplasticityorganismalimportantmechanismcopecommunity-basedshiftsresponseacclimatinggivevaluableindicationsfutureregionalscaleReliableregional-scalepredictionshoweverhampereduncertaintiescommunitiespresenttrait-baseddynamicsusecombinationobservationaldataprovidefirstcrudeestimatecommunityinvestigateeffectsdifferentscenariosiconictropics:SouthEastAsiaCaribbeanpredictsconferprotectiondelayingdeclineHowevercurrentratessufficientrescueBasedsuggestsubstantialdeclinesabundancesregionsranging12%55%dependingregionclimatechangescenarioconsideredhighlightimportanceurgencypreciseassessmentsquantitativeexamplelaboratoryexperimentsnaturalModellingocean

Similar Articles

Cited By