Learning processes in hierarchical pairs regulate entire gene expression in cells.

Tomoyuki Yamaguchi
Author Information
  1. Tomoyuki Yamaguchi: Research Institute, Nozaki Tokushukai Hospital, Daito City, Osaka, 574-0074, Japan. t.yamaguchi@tokushukai.jp.

Abstract

Expression of numerous genes is precisely controlled in a cell in various contexts. While genetic and epigenetic mechanisms contribute to this regulation, how each mechanism cooperates to ensure the proper expression patterns of the whole gene remains unclear. Here, I theoretically show that the repetition of simple biological processes makes cells functional with the appropriate expression patterns of all genes if the inappropriateness of current expression ratios is roughly fed back to the epigenetic states. A learning pair model is developed, in which two factors autonomously approach the target ratio by repeating two stochastic processes; competitive amplification with a small addition term and decay depending on the difference between the current and target ratios. Furthermore, thousands of factors are self-regulated in a hierarchical-pair architecture, in which the activation degrees competitively amplify, while transducing the activation signal, and decay at four different probabilities. Changes in whole-gene expression during human early embryogenesis and hematopoiesis are reproduced in simulation using this epigenetic learning process in a single genetically-determined hierarchical-pair architecture of gene regulatory cascades. On the background of this learning process, I propose the law of biological inertia, which means that a living cell basically maintains the expression pattern while renewing its contents.

References

  1. Nat Struct Mol Biol. 2013 Sep;20(9):1131-9 [PMID: 23934149]
  2. BMC Med Genomics. 2017 Oct 6;10(1):58 [PMID: 28985737]
  3. J R Soc Interface. 2016 Nov;13(124): [PMID: 27807271]
  4. Proc Natl Acad Sci U S A. 2011 May 17;108(20):8257-62 [PMID: 21536909]
  5. Int Immunol. 2019 Oct 16;31(11):743-753 [PMID: 31131864]
  6. Nat Rev Neurosci. 2010 Feb;11(2):127-38 [PMID: 20068583]
  7. Cell Res. 2018 Aug;28(8):819-832 [PMID: 30042384]
  8. Nat Genet. 2003 Mar;33 Suppl:245-54 [PMID: 12610534]
  9. Nat Biotechnol. 2014 Apr;32(4):381-386 [PMID: 24658644]
  10. Blood. 2021 May 6;137(18):2463-2480 [PMID: 33227818]
  11. Nat Commun. 2019 Dec 17;10(1):5743 [PMID: 31848347]
  12. Nat Rev Mol Cell Biol. 2008 Oct;9(10):770-80 [PMID: 18797474]
  13. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  14. Nat Commun. 2021 Apr 9;12(1):2141 [PMID: 33837218]
  15. Cell. 2016 Jul 14;166(2):451-467 [PMID: 27419872]
  16. Nature. 2012 Sep 6;489(7414):101-8 [PMID: 22955620]
  17. Nature. 2016 Jan 28;529(7587):484-9 [PMID: 26819042]
  18. Cell. 2016 May 5;165(4):1012-26 [PMID: 27062923]
  19. Nat Commun. 2018 Oct 30;9(1):4435 [PMID: 30375404]
  20. Cell Syst. 2021 Jun 16;12(6):636-653 [PMID: 34139170]
  21. Nature. 2012 Apr 11;485(7398):381-5 [PMID: 22495304]
  22. Cancer Cell. 2020 Feb 10;37(2):226-242.e7 [PMID: 32049047]
  23. Cell Stem Cell. 2017 Jun 1;20(6):858-873.e4 [PMID: 28457750]
  24. Nat Med. 2020 Oct;26(10):1644-1653 [PMID: 32929266]
  25. Sci Rep. 2020 Jan 16;10(1):459 [PMID: 31949247]
  26. Genome Biol. 2016 Aug 17;17(1):173 [PMID: 27534536]
  27. Nat Microbiol. 2018 Jun;3(6):718-731 [PMID: 29795541]
  28. Nat Rev Genet. 2015 Feb;16(2):71-84 [PMID: 25554358]
  29. Nature. 2015 Feb 26;518(7540):529-33 [PMID: 25719670]
  30. Nat Immunol. 2018 Jan;19(1):85-97 [PMID: 29167569]

MeSH Term

Computer Simulation
Epigenesis, Genetic
Gene Expression
Gene Expression Regulation
Humans
Stochastic Processes

Word Cloud

Created with Highcharts 10.0.0expressionepigeneticgeneprocesseslearninggenescellpatternsbiologicalcellscurrentratiostwofactorstargetdecayhierarchical-pairarchitectureactivationprocessExpressionnumerouspreciselycontrolledvariouscontextsgeneticmechanismscontributeregulationmechanismcooperatesensureproperwholeremainsuncleartheoreticallyshowrepetitionsimplemakesfunctionalappropriateinappropriatenessroughlyfedbackstatespairmodeldevelopedautonomouslyapproachratiorepeatingstochasticcompetitiveamplificationsmalladditiontermdependingdifferenceFurthermorethousandsself-regulateddegreescompetitivelyamplifytransducingsignalfourdifferentprobabilitiesChangeswhole-genehumanearlyembryogenesishematopoiesisreproducedsimulationusingsinglegenetically-determinedregulatorycascadesbackgroundproposelawinertiameanslivingbasicallymaintainspatternrenewingcontentsLearninghierarchicalpairsregulateentire

Similar Articles

Cited By