Chronic activation of MUC1-C in wound repair promotes progression to cancer stem cells.

Donald W Kufe
Author Information
  1. Donald W Kufe: Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.

Abstract

The gene emerged in mammals to afford protection of barrier epithelial tissues from the external environment. encodes a transmembrane C-terminal (MUC1-C) subunit that is activated by loss of homeostasis and induces inflammatory, proliferative, and remodeling pathways associated with wound repair. As a consequence, chronic activation of MUC1-C promotes lineage plasticity, epigenetic reprogramming, and carcinogenesis. In driving cancer progression, MUC1-C is imported into the nucleus, where it induces NF-κB inflammatory signaling and the epithelial-mesenchymal transition (EMT). MUC1-C represses gene expression by activating (i) DNA methyltransferase 1 (DNMT1) and DNMT3b, (ii) Polycomb Repressive Complex 1 (PRC1) and PRC2, and (iii) the nucleosome remodeling and deacetylase (NuRD) complex. PRC1/2-mediated gene repression is counteracted by the SWI/SNF chromatin remodeling complexes. MUC1-C activates the SWI/SNF BAF and PBAF complexes in cancer stem cell (CSC) models with the induction of genome-wide differentially accessible regions and expressed genes. MUC1-C regulates chromatin accessibility of enhancer-like signatures in association with the induction of the Yamanaka pluripotency factors and recruitment of JUN and BAF, which promote increases in histone activation marks and opening of chromatin. These and other findings described in this review have uncovered a pivotal role for MUC1-C in integrating lineage plasticity and epigenetic reprogramming, which are transient in wound repair and sustained in promoting CSC progression.

Keywords

References

  1. Nat Rev Mol Cell Biol. 2008 Aug;9(8):628-38 [PMID: 18628784]
  2. FEBS J. 2013 Mar;280(6):1491-501 [PMID: 23331320]
  3. Annu Rev Immunol. 2021 Apr 26;39:667-693 [PMID: 33637018]
  4. Mol Cell. 2017 Dec 21;68(6):1067-1082.e12 [PMID: 29272704]
  5. Front Oncol. 2019 Jul 10;9:626 [PMID: 31355143]
  6. Mol Cancer Res. 2022 Apr 1;20(4):556-567 [PMID: 35022313]
  7. Oncogene. 2016 Dec 15;35(50):6439-6445 [PMID: 27212035]
  8. Sci Rep. 2017 Aug 7;7(1):7481 [PMID: 28785086]
  9. Cell. 2021 Jun 24;184(13):3361-3375 [PMID: 34171319]
  10. Cancer Res. 2019 Nov 15;79(22):5711-5722 [PMID: 31519689]
  11. Nat Rev Cancer. 2009 Dec;9(12):874-85 [PMID: 19935676]
  12. Carcinogenesis. 2020 Sep 24;41(9):1173-1183 [PMID: 32710608]
  13. J Biol Chem. 2012 Mar 23;287(13):10703-10713 [PMID: 22318732]
  14. Cold Spring Harb Perspect Med. 2016 Aug 01;6(8): [PMID: 27413115]
  15. iScience. 2019 May 31;15:196-210 [PMID: 31077944]
  16. Mol Cancer Ther. 2019 Oct;18(10):1744-1754 [PMID: 31308076]
  17. Cell. 2010 Jun 11;141(6):943-55 [PMID: 20550931]
  18. Nat Cell Biol. 2007 Dec;9(12):1419-27 [PMID: 18037881]
  19. JCI Insight. 2020 Jun 18;5(12): [PMID: 32427590]
  20. Curr Opin Genet Dev. 2021 Oct;70:89-96 [PMID: 34246082]
  21. Carcinogenesis. 2022 Feb 11;43(1):67-76 [PMID: 34657147]
  22. Trends Genet. 2017 Dec;33(12):943-959 [PMID: 28919019]
  23. Mol Biol Cell. 2000 Mar;11(3):819-31 [PMID: 10712502]
  24. N Engl J Med. 1986 Dec 25;315(26):1650-9 [PMID: 3537791]
  25. Stem Cells Transl Med. 2017 Feb;6(2):335-339 [PMID: 28191771]
  26. Blood. 2016 May 26;127(21):2587-97 [PMID: 26907633]
  27. Nat Rev Cancer. 2012 Feb 24;12(3):170-80 [PMID: 22362215]
  28. Cancer Res. 2021 Feb 15;81(4):1111-1122 [PMID: 33323379]
  29. Nat Rev Mol Cell Biol. 2017 Jul;18(7):407-422 [PMID: 28512350]
  30. J Biol Chem. 2019 Jan 18;294(3):861-873 [PMID: 30459231]
  31. J Biol Chem. 2007 Jul 6;282(27):19321-30 [PMID: 17500061]
  32. Genes Dev. 2019 Aug 1;33(15-16):936-959 [PMID: 31123059]
  33. Cell. 2017 May 4;169(4):636-650.e14 [PMID: 28434617]
  34. Elife. 2017 Mar 13;6: [PMID: 28287392]
  35. SPG Biomed. 2018;1(2): [PMID: 31172135]
  36. Nat Rev Genet. 2021 Jan;22(1):38-58 [PMID: 32958894]
  37. Front Mol Biosci. 2020 Apr 23;7:71 [PMID: 32391381]
  38. Cancer Res. 2016 Mar 15;76(6):1538-48 [PMID: 26833129]
  39. Nat Med. 2019 Dec;25(12):1822-1832 [PMID: 31806905]
  40. Int J Mol Sci. 2020 Nov 25;21(23): [PMID: 33255744]
  41. Oncoimmunology. 2022 Feb 1;11(1):2029298 [PMID: 35127252]
  42. Trends Cancer. 2017 May;3(5):372-386 [PMID: 28718414]
  43. Stem Cells Dev. 2013 Jan 1;22(1):37-50 [PMID: 22998387]
  44. Nat Commun. 2020 Jan 17;11(1):338 [PMID: 31953400]
  45. ACS Chem Biol. 2017 Oct 20;12(10):2482-2490 [PMID: 28921948]
  46. Nat Rev Clin Oncol. 2020 Jun;17(6):360-371 [PMID: 32152485]
  47. Oncogene. 2014 Mar 27;33(13):1680-9 [PMID: 23584475]
  48. Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):9020-9029 [PMID: 30996127]
  49. Nat Rev Cancer. 2003 Nov;3(11):859-68 [PMID: 14668816]
  50. Oncogene. 2017 May 18;36(20):2791-2801 [PMID: 27893710]
  51. J Biol Chem. 1997 May 9;272(19):12492-4 [PMID: 9139698]
  52. Nat Rev Mol Cell Biol. 2021 May;22(5):326-345 [PMID: 33723438]
  53. Int J Oncol. 2012 May;40(5):1643-9 [PMID: 22200620]
  54. Nat Med. 2013 Nov;19(11):1438-49 [PMID: 24202396]
  55. JCI Insight. 2018 Jun 21;3(12): [PMID: 29925694]
  56. Nat Genet. 2008 May;40(5):499-507 [PMID: 18443585]
  57. Cancer Res. 2009 Sep 1;69(17):7013-21 [PMID: 19706766]
  58. Immunity. 2019 Jul 16;51(1):27-41 [PMID: 31315034]
  59. Cell. 2007 Nov 30;131(5):861-72 [PMID: 18035408]
  60. Cell. 2017 Jan 26;168(3):442-459.e20 [PMID: 28111071]
  61. J Immunother Cancer. 2021 Jan;9(1): [PMID: 33495298]
  62. Cancer Lett. 2014 May 1;346(2):225-36 [PMID: 24384091]
  63. Mol Cancer Res. 2016 Dec;14(12):1266-1276 [PMID: 27658423]
  64. Nat Rev Mol Cell Biol. 2016 Mar;17(3):183-93 [PMID: 26883003]
  65. Int J Oncol. 2007 Sep;31(3):671-7 [PMID: 17671696]
  66. Biochim Biophys Acta Rev Cancer. 2017 Aug;1868(1):117-122 [PMID: 28302417]
  67. Sci Signal. 2011 Feb 15;4(160):ra9 [PMID: 21325207]
  68. Nat Rev Genet. 2018 May;19(5):311-325 [PMID: 29479084]
  69. Cell. 2016 Jun 30;166(1):21-45 [PMID: 27368099]
  70. Oncogene. 2018 Apr;37(16):2079-2088 [PMID: 29379165]
  71. Nat Genet. 2021 Mar;53(3):279-287 [PMID: 33558757]
  72. Hybridoma. 1984 Fall;3(3):223-32 [PMID: 6094338]
  73. Cell. 2018 Apr 5;173(2):338-354.e15 [PMID: 29625051]
  74. EMBO J. 2020 Jan 2;39(1):e99165 [PMID: 31571238]
  75. Cell. 2019 Jun 13;177(7):1757-1770.e21 [PMID: 31056282]
  76. Oncogene. 2021 Jul;40(30):4930-4940 [PMID: 34163028]

Grants

  1. R01 CA097098/NCI NIH HHS
  2. R01 CA166480/NCI NIH HHS
  3. U01 CA233084/NCI NIH HHS

Word Cloud

Created with Highcharts 10.0.0MUC1-CremodelingwoundrepairchromatingeneactivationlineageplasticityepigeneticreprogrammingcancerprogressionCSCinducesinflammatorypromotes1SWI/SNFcomplexesBAFsteminductionemergedmammalsaffordprotectionbarrierepithelialtissuesexternalenvironmentencodestransmembraneC-terminalsubunitactivatedlosshomeostasisproliferativepathwaysassociatedconsequencechroniccarcinogenesisdrivingimportednucleusNF-κBsignalingepithelial-mesenchymaltransitionEMTrepressesexpressionactivatingDNAmethyltransferaseDNMT1DNMT3biiPolycombRepressiveComplexPRC1PRC2iiinucleosomedeacetylaseNuRDcomplexPRC1/2-mediatedrepressioncounteractedactivatesPBAFcellmodelsgenome-widedifferentiallyaccessibleregionsexpressedgenesregulatesaccessibilityenhancer-likesignaturesassociationYamanakapluripotencyfactorsrecruitmentJUNpromoteincreaseshistonemarksopeningfindingsdescribedreviewuncoveredpivotalroleintegratingtransientsustainedpromotingChroniccellsMUC1

Similar Articles

Cited By