SARS-CoV-2 Variants of Concern Hijack IFITM2 for Efficient Replication in Human Lung Cells.

Rayhane Nchioua, Annika Schundner, Dorota Kmiec, Caterina Prelli Bozzo, Fabian Zech, Lennart Koepke, Alexander Graf, Stefan Krebs, Helmut Blum, Manfred Frick, Konstantin M J Sparrer, Frank Kirchhoff
Author Information
  1. Rayhane Nchioua: Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
  2. Annika Schundner: Institute of General Physiology, Ulm University Medical Center, Ulm, Germany.
  3. Dorota Kmiec: Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
  4. Caterina Prelli Bozzo: Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
  5. Fabian Zech: Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
  6. Lennart Koepke: Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
  7. Alexander Graf: Laboratory for Functional Genome Analysis, Gene Center, LMU M��nchen, Munich, Germany.
  8. Stefan Krebs: Laboratory for Functional Genome Analysis, Gene Center, LMU M��nchen, Munich, Germany.
  9. Helmut Blum: Laboratory for Functional Genome Analysis, Gene Center, LMU M��nchen, Munich, Germany.
  10. Manfred Frick: Institute of General Physiology, Ulm University Medical Center, Ulm, Germany.
  11. Konstantin M J Sparrer: Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
  12. Frank Kirchhoff: Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany. ORCID

Abstract

It has recently been shown that an early SARS-CoV-2 isolate (NL-02-2020) hijacks interferon-induced transmembrane proteins (IFITMs) for efficient replication in human lung cells, cardiomyocytes, and gut organoids. To date, several "variants of concern" (VOCs) showing increased infectivity and resistance to neutralization have emerged and globally replaced the early viral strains. Here, we determined whether the five current SARS-CoV-2 VOCs (Alpha, Beta, Gamma, Delta, and Omicron) maintained the dependency on IFITM proteins for efficient replication. We found that depletion of IFITM2 strongly reduces viral RNA production by all VOCs in the human epithelial lung cancer cell line Calu-3. Silencing of IFITM1 had modest effects, while knockdown of IFITM3 resulted in an intermediate phenotype. Strikingly, depletion of IFITM2 generally reduced infectious virus production by more than 4 orders of magnitude. In addition, an antibody directed against the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in induced pluripotent stem cell (iPSC)-derived alveolar epithelial type II cells, thought to represent major viral target cells in the lung. In conclusion, endogenously expressed IFITM proteins (especially IFITM2) are critical cofactors for efficient replication of genuine SARS-CoV-2 VOCs, including the currently dominant Omicron variant. Recent data indicate that SARS-CoV-2 requires endogenously expressed IFITM proteins for efficient infection. However, the results were obtained with an early SARS-CoV-2 isolate. Thus, it remained to be determined whether IFITMs are also important cofactors for infection of emerging SARS-CoV-2 VOCs that outcompeted the original strains in the meantime. This includes the Omicron VOC, which currently dominates the pandemic. Here, we show that depletion of endogenous IFITM2 expression almost entirely prevents productive infection of Alpha, Beta, Gamma, Delta, and Omicron SARS-CoV-2 VOCs in human lung cells. In addition, an antibody targeting the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in iPSC-derived alveolar epithelial type II cells. Our results show that SARS-CoV-2 VOCs, including the currently dominant Omicron variant, are strongly dependent on IFITM2 for efficient replication, suggesting a key proviral role of IFITMs in viral transmission and pathogenicity.

Keywords

References

  1. Appl Microbiol Biotechnol. 2021 Dec;105(24):9035-9045 [PMID: 34755213]
  2. ACS Nano. 2021 May 25;15(5):8155-8170 [PMID: 33656312]
  3. Cell Stem Cell. 2017 Oct 5;21(4):472-488.e10 [PMID: 28965766]
  4. EMBO J. 2021 Aug 16;40(16):e107821 [PMID: 34159616]
  5. Nat Microbiol. 2021 Oct;6(10):1219-1232 [PMID: 34471255]
  6. Nat Protoc. 2019 Dec;14(12):3303-3332 [PMID: 31732721]
  7. Nat Med. 2022 Mar;28(3):490-495 [PMID: 35046573]
  8. Virus Res. 2022 Jul 2;315:198765 [PMID: 35367284]
  9. Cell Mol Gastroenterol Hepatol. 2021;11(4):935-948 [PMID: 33186749]
  10. Dis Model Mech. 2021 Jun 1;14(6): [PMID: 34219165]
  11. Lancet. 2021 Jun 26;397(10293):2461-2462 [PMID: 34139198]
  12. Nature. 2020 Mar;579(7798):270-273 [PMID: 32015507]
  13. PNAS Nexus. 2022 Sep 01;1(5):pgac180 [PMID: 36712320]
  14. Nat Rev Microbiol. 2021 Jul;19(7):409-424 [PMID: 34075212]
  15. Nature. 2021 Apr;592(7854):438-443 [PMID: 33690265]
  16. N Engl J Med. 2020 Feb 20;382(8):727-733 [PMID: 31978945]
  17. J Virol. 2022 Mar 23;96(6):e0207721 [PMID: 35225672]
  18. Nat Commun. 2021 Jul 28;12(1):4584 [PMID: 34321474]
  19. J Med Virol. 2022 Apr;94(4):1641-1649 [PMID: 34914115]
  20. Euro Surveill. 2021 Mar;26(10): [PMID: 33706862]
  21. Cell Host Microbe. 2014 Dec 10;16(6):736-47 [PMID: 25464829]
  22. J Med Virol. 2022 Mar;94(3):821-822 [PMID: 34596249]
  23. mBio. 2020 Oct 16;11(5): [PMID: 33067384]
  24. Annu Rev Virol. 2014 Nov 1;1:261-283 [PMID: 25599080]
  25. Nature. 2022 Feb;602(7898):654-656 [PMID: 35016196]
  26. Lancet. 2020 Jun 6;395(10239):1757-1758 [PMID: 32446324]
  27. Cell Stem Cell. 2020 Dec 3;27(6):962-973.e7 [PMID: 32979316]
  28. Cell. 2020 Aug 20;182(4):812-827.e19 [PMID: 32697968]
  29. Cell. 2020 May 28;181(5):1016-1035.e19 [PMID: 32413319]
  30. Front Microbiol. 2019 Jan 08;9:3228 [PMID: 30687247]
  31. Retrovirology. 2017 Nov 21;14(1):53 [PMID: 29162141]
  32. Sci Rep. 2017 Dec 21;7(1):17972 [PMID: 29269892]
  33. Emerg Microbes Infect. 2022 Dec;11(1):277-283 [PMID: 34951565]
  34. Microorganisms. 2021 Jul 20;9(7): [PMID: 34361977]
  35. J Biol Chem. 2013 Nov 8;288(45):32184-32193 [PMID: 24067232]
  36. EMBO J. 2021 Feb 1;40(3):e106501 [PMID: 33270927]
  37. Science. 2021 May 21;372(6544):815-821 [PMID: 33853970]
  38. J Microbiol. 2021 Sep;59(9):807-818 [PMID: 34449057]
  39. Proc Natl Acad Sci U S A. 2014 May 6;111(18):6756-61 [PMID: 24753610]
  40. Cell Rep. 2022 May 17;39(7):110829 [PMID: 35550680]
  41. Cell. 2021 Sep 30;184(20):5189-5200.e7 [PMID: 34537136]
  42. J Virol. 2022 Dec 14;96(23):e0125022 [PMID: 36350154]
  43. Front Immunol. 2022 Jan 24;12:830527 [PMID: 35140714]
  44. PLoS Pathog. 2013 Jan;9(1):e1003124 [PMID: 23358889]
  45. EMBO Rep. 2023 Apr 5;24(4):e56660 [PMID: 36880581]
  46. Viruses. 2014 Sep 26;6(9):3683-98 [PMID: 25256397]
  47. Cell. 2020 Oct 29;183(3):739-751.e8 [PMID: 32991842]
  48. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  49. Viruses. 2022 Mar 30;14(4): [PMID: 35458456]
  50. Genome Biol. 2019 Jan 8;20(1):8 [PMID: 30621750]
  51. Nature. 2021 Jul;595(7865):107-113 [PMID: 33915569]
  52. Nature. 2021 Nov;599(7883):114-119 [PMID: 34488225]
  53. Genome Med. 2022 Jan 27;14(1):10 [PMID: 35086559]
  54. Nat Rev Immunol. 2013 Jan;13(1):46-57 [PMID: 23237964]
  55. Nat Med. 2020 May;26(5):681-687 [PMID: 32327758]
  56. EMBO J. 2020 Dec 1;39(23):e106267 [PMID: 33051876]

Grants

  1. U01 TR001810/NCATS NIH HHS

MeSH Term

COVID-19
Cell Line, Tumor
Humans
Lung
Membrane Proteins
RNA-Binding Proteins
SARS-CoV-2
Virus Internalization
Virus Replication

Chemicals

IFITM2 protein, human
IFITM3 protein, human
Membrane Proteins
RNA-Binding Proteins

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2IFITM2VOCsreplicationcellsOmicronproteinsefficientlungviralepithelialearlyIFITMshumanIFITMdepletionVOCalveolartypeIIcurrentlyinfectionisolateinterferon-inducedtransmembranestrainsdeterminedwhetherAlphaBetaGammaDeltastronglyproductioncelladditionantibodyNterminusinhibitedendogenouslyexpressedcofactorsincludingdominantvariantresultsshowiPSC-derivedrecentlyshownNL-02-2020hijackscardiomyocytesgutorganoidsdateseveral"variantsconcern"showingincreasedinfectivityresistanceneutralizationemergedgloballyreplacedfivecurrentmaintaineddependencyfoundreducesRNAcancerlineCalu-3SilencingIFITM1modesteffectsknockdownIFITM3resultedintermediatephenotypeStrikinglygenerallyreducedinfectiousvirus4ordersmagnitudedirectedinducedpluripotentstemiPSC-derivedthoughtrepresentmajortargetconclusionespeciallycriticalgenuineRecentdataindicaterequiresHoweverobtainedThusremainedalsoimportantemergingoutcompetedoriginalmeantimeincludesdominatespandemicendogenousexpressionalmostentirelypreventsproductivetargetingdependentsuggestingkeyproviralroletransmissionpathogenicityVariantsConcernHijackEfficientReplicationHumanLungCellsvariantsconcern

Similar Articles

Cited By