Opportunities and challenges of using metagenomic data to bring uncultured microbes into cultivation.

Sijia Liu, Christina D Moon, Nan Zheng, Sharon Huws, Shengguo Zhao, Jiaqi Wang
Author Information
  1. Sijia Liu: State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
  2. Christina D Moon: AgResearch Ltd., Grasslands Research Centre, Palmerston North, New Zealand.
  3. Nan Zheng: State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
  4. Sharon Huws: School of Biological Sciences and Institute for Global Food Security, 19 Chlorine Gardens, Queen's University Belfast, Belfast, UK.
  5. Shengguo Zhao: State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China. zhaoshengguo1984@163.com.
  6. Jiaqi Wang: State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China. jiaqiwang@vip.163.com.

Abstract

Although there is now an extensive understanding of the diversity of microbial life on earth through culture-independent metagenomic DNA sequence analyses, the isolation and cultivation of microbes remains critical to directly study them and confirm their metabolic and physiological functions, and their ecological roles. The majority of environmental microbes are as yet uncultured however; therefore, bringing these rare or poorly characterized groups into culture is a priority to further understand microbiome functions. Moreover, cultivated isolates may find utility in a range of applications, such as new probiotics, biocontrol agents, and agents for industrial processes. The growing abundance of metagenomic and meta-transcriptomic sequence information from a wide range of environments provides more opportunities to guide the isolation and cultivation of microbes of interest. In this paper, we discuss a range of successful methodologies and applications that have underpinned recent metagenome-guided isolation and cultivation of microbe efforts. These approaches include determining specific culture conditions to enrich for taxa of interest, to more complex strategies that specifically target the capture of microbial species through antibody engineering and genome editing strategies. With the greater degree of genomic information now available from uncultivated members, such as via metagenome-assembled genomes, the theoretical understanding of their cultivation requirements will enable greater possibilities to capture these and ultimately gain a more comprehensive understanding of the microbiomes. Video Abstract.

References

  1. Stand Genomic Sci. 2017 Jan 19;12:9 [PMID: 28127419]
  2. Nat Rev Microbiol. 2013 Feb;11(2):83-94 [PMID: 23321532]
  3. Appl Environ Microbiol. 2010 Apr;76(8):2445-50 [PMID: 20173072]
  4. Nat Rev Microbiol. 2017 Oct;15(10):578 [PMID: 28852214]
  5. Nucleic Acids Res. 2021 Jan 8;49(D1):D274-D281 [PMID: 33167031]
  6. Lancet. 2003 Aug 9;362(9382):447-9 [PMID: 12927433]
  7. Nat Prod Rep. 2015 Jul;32(7):904-36 [PMID: 25891201]
  8. Science. 2004 Apr 2;304(5667):66-74 [PMID: 15001713]
  9. mSystems. 2016 Jun 28;1(3): [PMID: 27822530]
  10. Sci Rep. 2019 Sep 5;9(1):12807 [PMID: 31488869]
  11. J Microbiol Methods. 2003 Feb;52(2):239-44 [PMID: 12459244]
  12. Nat Protoc. 2021 Feb;16(2):988-1012 [PMID: 33442053]
  13. Nat Rev Microbiol. 2015 Apr;13(4):217-29 [PMID: 25730701]
  14. Appl Environ Microbiol. 2005 Feb;71(2):826-34 [PMID: 15691937]
  15. Microbiome. 2020 Sep 16;8(1):134 [PMID: 32938501]
  16. FEMS Microbiol Ecol. 2009 Jun;68(3):363-71 [PMID: 19453493]
  17. Crit Rev Microbiol. 2018 Mar;44(2):212-229 [PMID: 28562180]
  18. mBio. 2016 May 17;7(3): [PMID: 27190214]
  19. Genome Biol. 2019 May 16;20(1):96 [PMID: 31097033]
  20. Genome Res. 2020 Mar;30(3):315-333 [PMID: 32188701]
  21. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D258-61 [PMID: 14681407]
  22. Nat Rev Microbiol. 2015 Mar;13(3):133-46 [PMID: 25659323]
  23. Nucleic Acids Res. 2019 Jan 8;47(D1):D590-D595 [PMID: 30321428]
  24. Nucleic Acids Res. 2002 Jan 1;30(1):56-8 [PMID: 11752253]
  25. ISME J. 2011 Jan;5(1):61-70 [PMID: 20613790]
  26. Microb Pathog. 2020 Dec;149:104350 [PMID: 32561419]
  27. Int J Syst Evol Microbiol. 2018 Jun;68(6):1825-1829 [PMID: 29724269]
  28. Ecotoxicol Environ Saf. 2019 Jul 30;176:300-308 [PMID: 30947033]
  29. Nat Biotechnol. 2018 Nov;36(10):996-1004 [PMID: 30148503]
  30. Science. 2018 Oct 26;362(6413):453-457 [PMID: 30361372]
  31. Curr Biol. 2019 Mar 18;29(6):1030-1037.e5 [PMID: 30827913]
  32. Acc Chem Res. 2021 May 4;54(9):2076-2087 [PMID: 33856204]
  33. Environ Microbiol. 2021 Jul;23(7):3585-3598 [PMID: 32869496]
  34. Nat Biotechnol. 2019 Aug;37(8):953-961 [PMID: 31375809]
  35. Clin Microbiol Infect. 2012 Dec;18(12):1185-93 [PMID: 23033984]
  36. Nature. 2004 Mar 4;428(6978):37-43 [PMID: 14961025]
  37. Appl Environ Microbiol. 2016 Feb 05;82(7):2210-8 [PMID: 26850294]
  38. Nucleic Acids Res. 2020 Jan 8;48(D1):D517-D525 [PMID: 31665441]
  39. mBio. 2016 Sep 27;7(5): [PMID: 27677797]
  40. Science. 2002 May 10;296(5570):1127-9 [PMID: 12004133]
  41. Nat Commun. 2016 Jul 05;7:12115 [PMID: 27378076]
  42. Nature. 2012 Nov 22;491(7425):541-6 [PMID: 23135396]
  43. Front Microbiol. 2021 Mar 23;12:613791 [PMID: 33833738]
  44. Microbiol Mol Biol Rev. 2004 Dec;68(4):669-85 [PMID: 15590779]
  45. Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):E5097 [PMID: 27512032]
  46. Nat Rev Microbiol. 2017 Oct;15(10):579-590 [PMID: 28824177]
  47. Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):E194-203 [PMID: 25550518]
  48. Trends Microbiol. 2013 Jul;21(7):325-33 [PMID: 23764387]
  49. Appl Environ Microbiol. 2005 Oct;71(10):6319-24 [PMID: 16204553]
  50. Science. 2011 Jul 29;333(6042):646-8 [PMID: 21719642]
  51. Nucleic Acids Res. 2018 Jan 4;46(D1):D633-D639 [PMID: 29059334]
  52. NPJ Biofilms Microbiomes. 2019 Jun 25;5(1):17 [PMID: 31263569]
  53. Clin Microbiol Rev. 2020 Oct 28;34(1): [PMID: 33115723]
  54. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W182-5 [PMID: 17526522]
  55. Nature. 2013 Jul 25;499(7459):431-7 [PMID: 23851394]
  56. Nat Biotechnol. 2020 Jun;38(6):701-707 [PMID: 32042169]
  57. Science. 2018 Feb 2;359(6375):559-563 [PMID: 29420286]
  58. PLoS Comput Biol. 2009 Dec;5(12):e1000605 [PMID: 20011109]
  59. Curr Protoc Mol Biol. 2018 Apr;122(1):e59 [PMID: 29851291]
  60. Bioinformatics. 2019 Sep 15;35(18):3224-3231 [PMID: 30689741]
  61. Microbiol Mol Biol Rev. 2008 Dec;72(4):557-78, Table of Contents [PMID: 19052320]
  62. Nat Rev Microbiol. 2014 Sep;12(9):635-45 [PMID: 25118885]
  63. Gigascience. 2020 Dec 21;9(12): [PMID: 33347571]
  64. Anim Microbiome. 2021 Jul 1;3(1):44 [PMID: 34210366]
  65. Proc Natl Acad Sci U S A. 2016 May 24;113(21):5970-5 [PMID: 27140646]
  66. Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9768-73 [PMID: 24965364]
  67. Nat Rev Microbiol. 2012 Dec;10(12):828-40 [PMID: 23154261]
  68. Netw Model Anal Health Inform Bioinform. 2016;5:26 [PMID: 27471658]
  69. Nature. 2015 Dec 24;528(7583):504-9 [PMID: 26610024]
  70. Sci Rep. 2019 Dec 9;9(1):18618 [PMID: 31819112]
  71. BMC Genomics. 2008 Feb 08;9:75 [PMID: 18261238]
  72. Cell Host Microbe. 2020 Jul 8;28(1):134-146.e4 [PMID: 32492369]
  73. Nat Prod Rep. 2018 May 25;35(5):434-454 [PMID: 29644346]
  74. Microb Inform Exp. 2012 Feb 09;2(1):3 [PMID: 22587947]
  75. Nucleic Acids Res. 2019 Jan 8;47(D1):D542-D549 [PMID: 30395242]
  76. Front Genet. 2019 Oct 15;10:999 [PMID: 31681429]
  77. Microbiome. 2014 Jun 05;2:19 [PMID: 24949196]
  78. Genome Med. 2016 Apr 13;8(1):39 [PMID: 27074706]
  79. Nat Biotechnol. 2019 Nov;37(11):1314-1321 [PMID: 31570900]
  80. Yale J Biol Med. 2016 Sep 30;89(3):353-362 [PMID: 27698619]
  81. Methods Mol Biol. 2012;850:483-94 [PMID: 22307715]
  82. Nat Rev Microbiol. 2007 May;5(5):384-92 [PMID: 17435792]
  83. J Mol Biol. 2016 Feb 22;428(4):726-731 [PMID: 26585406]
  84. Microbiome. 2018 May 24;6(1):94 [PMID: 29793532]
  85. J Pharm Anal. 2020 Oct;10(5):444-451 [PMID: 33133728]
  86. Nat Methods. 2015 Aug;12(8):780-6 [PMID: 26121404]
  87. Scientifica (Cairo). 2019 Apr 2;2019:9106395 [PMID: 31065398]
  88. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51 [PMID: 22645317]
  89. Nat Microbiol. 2022 Jan;7(1):34-47 [PMID: 34873292]
  90. mSystems. 2018 Sep 25;3(5): [PMID: 30273414]
  91. Nucleic Acids Res. 2019 Jan 8;47(D1):D596-D600 [PMID: 30272209]
  92. Genomics Proteomics Bioinformatics. 2018 Dec;16(6):405-415 [PMID: 30597257]
  93. Nature. 2015 Jul 9;523(7559):208-11 [PMID: 26083755]
  94. Environ Microbiol. 2020 Jul;22(7):2613-2624 [PMID: 32114713]
  95. Cell Host Microbe. 2020 Oct 7;28(4):586-601.e6 [PMID: 32841605]
  96. Clin Microbiol Rev. 2015 Jan;28(1):208-36 [PMID: 25567228]
  97. Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):E1878-87 [PMID: 22699508]
  98. ISME Commun. 2021 Mar 24;1(1):2 [PMID: 37938695]
  99. Nucleic Acids Res. 2019 Jan 8;47(D1):D631-D636 [PMID: 30256983]
  100. Brief Bioinform. 2019 Jul 19;20(4):1085-1093 [PMID: 29447345]
  101. FEMS Microbiol Ecol. 2014 Feb;87(2):486-502 [PMID: 24164535]
  102. Front Microbiol. 2020 Aug 14;11:1826 [PMID: 33013723]
  103. Nat Microbiol. 2020 Aug;5(8):987-994 [PMID: 32514073]
  104. Int J Mol Sci. 2015 Jul 24;16(8):16897-919 [PMID: 26213926]
  105. Microb Biotechnol. 2017 Jan;10(1):125-137 [PMID: 27748032]
  106. Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3229-36 [PMID: 23391737]
  107. Nat Microbiol. 2019 Jun;4(6):1035-1048 [PMID: 30886359]
  108. Nat Rev Microbiol. 2018 Jun;16(6):383-390 [PMID: 29599459]
  109. Appl Environ Microbiol. 2002 Feb;68(2):838-45 [PMID: 11823226]
  110. Microbiome. 2020 Jan 23;8(1):5 [PMID: 31969191]
  111. Anal Chem. 2013 Nov 19;85(22):10697-701 [PMID: 24083399]
  112. Appl Environ Microbiol. 2005 Aug;71(8):4220-4 [PMID: 16085806]
  113. Nucleic Acids Res. 2019 Jan 8;47(D1):D309-D314 [PMID: 30418610]
  114. Nat Commun. 2014 Aug 28;5:4714 [PMID: 25163406]
  115. PLoS Biol. 2019 Feb 4;17(2):e3000106 [PMID: 30716065]

MeSH Term

Bacteria
Genomics
Metagenome
Metagenomics
Microbiota

Word Cloud

Created with Highcharts 10.0.0cultivationmicrobesunderstandingmetagenomicisolationrangenowmicrobialsequencefunctionsunculturedcultureapplicationsagentsinformationintereststrategiescapturegreaterAlthoughextensivediversitylifeearthculture-independentDNAanalysesremainscriticaldirectlystudyconfirmmetabolicphysiologicalecologicalrolesmajorityenvironmentalyethoweverthereforebringingrarepoorlycharacterizedgroupspriorityunderstandmicrobiomeMoreovercultivatedisolatesmayfindutilitynewprobioticsbiocontrolindustrialprocessesgrowingabundancemeta-transcriptomicwideenvironmentsprovidesopportunitiesguidepaperdiscusssuccessfulmethodologiesunderpinnedrecentmetagenome-guidedmicrobeeffortsapproachesincludedeterminingspecificconditionsenrichtaxacomplexspecificallytargetspeciesantibodyengineeringgenomeeditingdegreegenomicavailableuncultivatedmembersviametagenome-assembledgenomestheoreticalrequirementswillenablepossibilitiesultimatelygaincomprehensivemicrobiomesVideoAbstractOpportunitieschallengesusingdatabring

Similar Articles

Cited By