A Bayesian Approach to Extracting Kinetic Information from Artificial Enzymatic Networks.

Mathieu G Baltussen, Jeroen van de Wiel, Cristina Lía Fernández Regueiro, Miglė Jakštaitė, Wilhelm T S Huck
Author Information
  1. Mathieu G Baltussen: Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ, Nijmegen, The Netherlands. ORCID
  2. Jeroen van de Wiel: Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ, Nijmegen, The Netherlands.
  3. Cristina Lía Fernández Regueiro: Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ, Nijmegen, The Netherlands.
  4. Miglė Jakštaitė: Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ, Nijmegen, The Netherlands.
  5. Wilhelm T S Huck: Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ, Nijmegen, The Netherlands. ORCID

Abstract

In order to create artificial enzymatic networks capable of increasingly complex behavior, an improved methodology in understanding and controlling the kinetics of these networks is needed. Here, we introduce a Bayesian analysis method allowing for the accurate inference of enzyme kinetic parameters and determination of most likely reaction mechanisms, by combining data from different experiments and network topologies in a single probabilistic analysis framework. This Bayesian approach explicitly allows us to continuously improve our parameter estimates and behavior predictions by iteratively adding new data to our models, while automatically taking into account uncertainties introduced by the experimental setups or the chemical processes in general. We demonstrate the potential of this approach by characterizing systems of enzymes compartmentalized in beads inside flow reactors. The methods we introduce here provide a new approach to the design of increasingly complex artificial enzymatic networks, making the design of such networks more efficient, and robust against the accumulation of experimental errors.

References

  1. Chaos. 2016 Jun;26(6):063110 [PMID: 27368775]
  2. Angew Chem Int Ed Engl. 2018 Oct 22;57(43):14065-14069 [PMID: 30183118]
  3. Sci Rep. 2017 Dec 5;7(1):17018 [PMID: 29208922]
  4. Nat Rev Mol Cell Biol. 2006 Mar;7(3):165-76 [PMID: 16482094]
  5. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Aug;68(2 Pt 1):021904 [PMID: 14525003]
  6. Nat Commun. 2017 Oct 24;8(1):1117 [PMID: 29061965]
  7. Nat Chem. 2014 Jun;6(6):511-8 [PMID: 24848237]
  8. Chem Soc Rev. 2008 Jan;37(1):101-8 [PMID: 18197336]
  9. BMC Syst Biol. 2017 May 5;11(1):54 [PMID: 28476119]
  10. J Am Chem Soc. 2021 Apr 21;143(15):5709-5716 [PMID: 33844531]
  11. PLoS Comput Biol. 2010 Mar 05;6(3):e1000696 [PMID: 20221262]
  12. Science. 2002 Oct 25;298(5594):824-7 [PMID: 12399590]
  13. Nat Rev Mol Cell Biol. 2009 Jun;10(6):410-22 [PMID: 19461664]
  14. FEBS J. 2009 Feb;276(4):923-42 [PMID: 19215298]
  15. Stat Med. 2006 Nov 15;25(21):3589-631 [PMID: 16947924]
  16. Angew Chem Int Ed Engl. 2019 Oct 7;58(41):14539-14543 [PMID: 31397527]
  17. Chem Soc Rev. 2015 Nov 7;44(21):7465-83 [PMID: 26214155]
  18. Bioinformatics. 2008 May 1;24(9):1191-7 [PMID: 18356193]
  19. Nat Protoc. 2014 Feb;9(2):439-56 [PMID: 24457334]
  20. Nat Rev Genet. 2004 Feb;5(2):101-13 [PMID: 14735121]
  21. Nat Rev Mol Cell Biol. 2008 Dec;9(12):981-91 [PMID: 18971947]
  22. J R Soc Interface. 2017 Jun;14(131): [PMID: 28615495]
  23. Chem Soc Rev. 2017 May 9;46(9):2543-2554 [PMID: 28418049]
  24. PLoS Comput Biol. 2019 Nov 4;15(11):e1007424 [PMID: 31682600]
  25. Nat Chem. 2015 Feb;7(2):160-5 [PMID: 25615670]
  26. Phys Rev Lett. 2010 Feb 12;104(6):060201 [PMID: 20366807]
  27. Beilstein J Org Chem. 2017 Jul 28;13:1486-1497 [PMID: 28845192]
  28. Anal Chem. 2012 Mar 20;84(6):2622-30 [PMID: 22229801]
  29. Chemistry. 2020 Feb 3;26(7):1676-1682 [PMID: 31808965]

MeSH Term

Bayes Theorem
Kinetics
Uncertainty

Word Cloud

Created with Highcharts 10.0.0networksBayesianapproachartificialenzymaticincreasinglycomplexbehaviorintroduceanalysisdatanewexperimentaldesignordercreatecapableimprovedmethodologyunderstandingcontrollingkineticsneededmethodallowingaccurateinferenceenzymekineticparametersdeterminationlikelyreactionmechanismscombiningdifferentexperimentsnetworktopologiessingleprobabilisticframeworkexplicitlyallowsuscontinuouslyimproveparameterestimatespredictionsiterativelyaddingmodelsautomaticallytakingaccountuncertaintiesintroducedsetupschemicalprocessesgeneraldemonstratepotentialcharacterizingsystemsenzymescompartmentalizedbeadsinsideflowreactorsmethodsprovidemakingefficientrobustaccumulationerrorsApproachExtractingKineticInformationArtificialEnzymaticNetworks

Similar Articles

Cited By