A data-driven hybrid ensemble AI model for COVID-19 infection forecast using multiple neural networks and reinforced learning.

Weiqiu Jin, Shuqing Dong, Chengqing Yu, Qingquan Luo
Author Information
  1. Weiqiu Jin: Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China; School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China.
  2. Shuqing Dong: School of Traffic and Transportation Engineering, Central South University, Hunan, 410075, PR China.
  3. Chengqing Yu: School of Traffic and Transportation Engineering, Central South University, Hunan, 410075, PR China.
  4. Qingquan Luo: Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, PR China; School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China. Electronic address: luoqingquan@hotmail.com.

Abstract

The COVID-19 outbreak poses a huge challenge to international public health. Reliable forecast of the number of cases is of great significance to the planning of health resources and the investigation and evaluation of the epidemic situation. The data-driven machine learning models can adapt to complex changes in the epidemic situation without relying on correct physical dynamics modeling, which are sensitive and accurate in predicting the development of the epidemic. In this paper, an ensemble hybrid model based on Temporal Convolutional Networks (TCN), Gated Recurrent Unit (GRU), Deep Belief Networks (DBN), Q-learning, and Support Vector Machine (SVM) models, namely TCN-GRU-DBN-Q-SVM model, is proposed to achieve the forecasting of COVID-19 infections. Three widely-used predictors, TCN, GRU, and DBN are used as elements of the hybrid model ensembled by the weights provided by reinforcement learning method. Furthermore, an error predictor built by SVM, is trained with validation set, and the final prediction result could be obtained by combining the TCN-GRU-DBN-Q model with the SVM error predictor. In order to investigate the forecasting performance of the proposed hybrid model, several comparison models (TCN-GRU-DBN-Q, LSTM, N-BEATS, ANFIS, VMD-BP, WT-RVFL, and ARIMA models) are selected. The experimental results show that: (1) the prediction effect of the TCN-GRU-DBN-Q-SVM model on COVID-19 infection is satisfactory, which has been verified in three national infection data from the UK, India, and the US, and the proposed model has good generalization ability; (2) in the proposed hybrid model, SVM can efficiently predict the possible error of the predicted series given by TCN-GRU-DBN-Q components; (3) the integrated weights based on Q-learning can be adaptively adjusted according to the characteristics of the data in the forecasting tasks in different countries and multiple situations, which ensures the accuracy, robustness and generalization of the proposed model.

Keywords

References

  1. Financ Res Lett. 2021 Jul;41:101844 [PMID: 34131413]
  2. Infect Dis Model. 2020 Feb 14;5:256-263 [PMID: 32110742]
  3. J Clin Med. 2020 May 15;9(5): [PMID: 32429121]
  4. Data Brief. 2020 May 08;30:105683 [PMID: 32391409]
  5. J Med Internet Res. 2021 Jun 14;23(6):e24285 [PMID: 34081607]
  6. Cureus. 2020 May 28;12(5):e8346 [PMID: 32617220]
  7. Swiss Med Wkly. 2020 May 04;150:w20277 [PMID: 32374886]
  8. Model Earth Syst Environ. 2022;8(1):961-966 [PMID: 33655020]
  9. Chaos Solitons Fractals. 2020 Jun;135:109864 [PMID: 32390691]
  10. Biomed Signal Process Control. 2021 Apr;66:102494 [PMID: 33594301]
  11. Cureus. 2020 Jun 12;12(6):e8582 [PMID: 32670717]
  12. Model Earth Syst Environ. 2021;7(2):1385-1391 [PMID: 32838022]
  13. PLoS Comput Biol. 2021 Sep 8;17(9):e1009334 [PMID: 34495965]
  14. PLoS One. 2021 Nov 3;16(11):e0259538 [PMID: 34731188]
  15. J Healthc Inform Res. 2021;5(4):497-528 [PMID: 34514291]
  16. Nonlinear Dyn. 2022;107(3):3065-3084 [PMID: 35068690]
  17. J Med Internet Res. 2021 Apr 13;23(4):e27045 [PMID: 33784239]
  18. Appl Soft Comput. 2021 Nov;111:107735 [PMID: 34335122]
  19. Chaos Solitons Fractals. 2020 Oct;139:110027 [PMID: 32834591]
  20. ISA Trans. 2022 May;124:41-56 [PMID: 33422330]
  21. Results Phys. 2021 Aug;27:104478 [PMID: 34183903]
  22. BMC Med Res Methodol. 2019 Mar 19;19(1):64 [PMID: 30890124]
  23. BMJ. 2021 Dec 1;375:n2365 [PMID: 34852999]
  24. PLoS One. 2021 Apr 14;16(4):e0250110 [PMID: 33852642]
  25. Chaos Solitons Fractals. 2020 Jun;135:109853 [PMID: 32501370]
  26. Sci Rep. 2022 Feb 10;12(1):2253 [PMID: 35145115]
  27. Emerg Infect Dis. 2022 Jan;28(1):76-84 [PMID: 34856112]
  28. Process Saf Environ Prot. 2021 May;149:223-233 [PMID: 33162687]
  29. IEEE Trans Cybern. 2020 Jul;50(7):2891-2904 [PMID: 32396126]
  30. Comput Biol Med. 2022 May;144:105354 [PMID: 35240374]
  31. IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651 [PMID: 27244717]
  32. Explor Res Hypothesis Med. 2020 Apr 18;5(2):1-6 [PMID: 32348380]
  33. Heliyon. 2020 Dec 14;6(12):e05722 [PMID: 33367130]
  34. J Clin Med. 2020 Mar 02;9(3): [PMID: 32131537]
  35. BMJ Health Care Inform. 2021 Sep;28(1): [PMID: 34580088]
  36. Philos Trans A Math Phys Eng Sci. 2022 Jan 10;380(2214):20210127 [PMID: 34802267]
  37. Nature. 2020 Aug;584(7821):420-424 [PMID: 32674112]
  38. Int J Data Sci Anal. 2022 Jan 15;:1-20 [PMID: 35071733]
  39. J Med Internet Res. 2021 Mar 23;23(3):e24925 [PMID: 33621186]
  40. Sci Total Environ. 2020 Aug 10;729:138883 [PMID: 32361446]
  41. Chaos Solitons Fractals. 2020 Sep;138:109942 [PMID: 32834576]
  42. Neural Comput Appl. 2021 Feb 4;:1-11 [PMID: 33564213]
  43. Stoch Environ Res Risk Assess. 2020;34(7):959-972 [PMID: 32837309]
  44. Lancet. 2020 Apr 25;395(10233):1321-1322 [PMID: 32277876]
  45. Bull Math Biol. 2022 Jan 4;84(2):28 [PMID: 34982256]
  46. Neural Comput. 2002 Aug;14(8):1771-800 [PMID: 12180402]
  47. Int J Infect Dis. 2021 Oct;111:100-107 [PMID: 34403783]
  48. Chaos Solitons Fractals. 2020 May;134:109761 [PMID: 32308258]
  49. Inf Process Manag. 2021 May;58(3):102486 [PMID: 33519039]
  50. BMC Public Health. 2021 Jun 7;21(1):1087 [PMID: 34098928]
  51. Epidemiol Infect. 2020 Nov 13;148:e284 [PMID: 33183366]
  52. Int J Environ Res Public Health. 2020 Jun 12;17(12): [PMID: 32545581]
  53. Math Biosci. 2022 Jan;343:108677 [PMID: 34848217]
  54. Appl Soft Comput. 2020 Nov;96:106626 [PMID: 32834800]
  55. Appl Soft Comput. 2021 May;103:107161 [PMID: 33584158]
  56. AIMS Public Health. 2021 Feb 01;8(1):124-136 [PMID: 33575412]
  57. JMIR Public Health Surveill. 2020 Apr 14;6(2):e18828 [PMID: 32234709]
  58. Chaos Solitons Fractals. 2020 Jun;135:109850 [PMID: 32355424]
  59. Front Public Health. 2022 Jan 04;9:728525 [PMID: 35059370]
  60. Int J Environ Res Public Health. 2020 Apr 16;17(8): [PMID: 32316165]
  61. J Biomed Inform. 2021 Nov;123:103920 [PMID: 34601140]

MeSH Term

COVID-19
Forecasting
Humans
Machine Learning
Neural Networks, Computer
Support Vector Machine

Word Cloud

Created with Highcharts 10.0.0modelCOVID-19hybridproposedmodelsSVMepidemiclearningcanforecastingerrorpredictionTCN-GRU-DBN-Qinfectionhealthforecastsituationdata-drivenensemblebasedNetworksTCNGRUDBNQ-learningTCN-GRU-DBN-Q-SVMweightspredictordatageneralizationmultipleoutbreakposeshugechallengeinternationalpublicReliablenumbercasesgreatsignificanceplanningresourcesinvestigationevaluationmachineadaptcomplexchangeswithoutrelyingcorrectphysicaldynamicsmodelingsensitiveaccuratepredictingdevelopmentpaperTemporalConvolutionalGatedRecurrentUnitDeepBeliefSupportVectorMachinenamelyachieveinfectionsThreewidely-usedpredictorsusedelementsensembledprovidedreinforcementmethodFurthermorebuilttrainedvalidationsetfinalresultobtainedcombiningorderinvestigateperformanceseveralcomparisonLSTMN-BEATSANFISVMD-BPWT-RVFLARIMAselectedexperimentalresultsshowthat:1effectsatisfactoryverifiedthreenationalUKIndiaUSgoodability2efficientlypredictpossiblepredictedseriesgivencomponents3integratedadaptivelyadjustedaccordingcharacteristicstasksdifferentcountriessituationsensuresaccuracyrobustnessAIusingneuralnetworksreinforcedArtificialintelligenceHybridInfection

Similar Articles

Cited By