Lateral decubitus single position anterior-posterior (AP) fusion shows equivalent results to minimally invasive transforaminal lumbar interbody fusion at one-year follow-up.

Kimberly Ashayeri, J Alex Thomas, Brett Braly, Nicholas O'Malley, Carlos Leon, Ivan Cheng, Brian Kwon, Mark Medley, Leon Eisen, Themistocles S Protopsaltis, Aaron J Buckland
Author Information
  1. Kimberly Ashayeri: Department of Neurosurgery, NYU Langone Medical Center, 462 1st Avenue, Suite 7S4, New York, NY, USA. Kimberly.ashayeri@nyulangone.org. ORCID
  2. J Alex Thomas: Atlantic Neurosurgical and Spine Specialists, Wilmington, NC, USA.
  3. Brett Braly: Oklahoma Sports, Science and Orthopaedics, Oklahoma City, OK, USA.
  4. Nicholas O'Malley: NYU Langone Orthopedic Hospital, New York, NY, USA.
  5. Carlos Leon: Oklahoma Sports, Science and Orthopaedics, Oklahoma City, OK, USA.
  6. Ivan Cheng: Austin Spine Surgery, Austin, TX, USA.
  7. Brian Kwon: Division of Spine Surgery, New England Baptist Hospital, Boston, MA, USA.
  8. Mark Medley: Department of Neurosurgery, NYU Langone Medical Center, 462 1st Avenue, Suite 7S4, New York, NY, USA.
  9. Leon Eisen: Oklahoma Sports, Science and Orthopaedics, Oklahoma City, OK, USA.
  10. Themistocles S Protopsaltis: Oklahoma Sports, Science and Orthopaedics, Oklahoma City, OK, USA.
  11. Aaron J Buckland: NYU Langone Orthopedic Hospital, New York, NY, USA.

Abstract

PURPOSE: This study compares perioperative and 1-year outcomes of lateral decubitus single position circumferential fusion (L-SPS) versus minimally invasive transforaminal lumbar interbody fusion (MIS TLIF) for degenerative pathologies.
METHODS: Multicenter retrospective chart review of patients undergoing AP fusion with L-SPS or MIS TLIF. Demographics and clinical and radiographic outcomes were compared using independent samples t tests and chi-squared analyses with significance set at p < 0.05.
RESULTS: A total of 445 patients were included: 353 L-SPS, 92 MIS TLIF. The L-SPS cohort was significantly older with fewer diabetics and more levels fused. The L-SPS cohort had significantly shorter operative time, blood loss, radiation dosage, and length of stay compared to MIS TLIF. 1-year follow-up showed that the L-SPS cohort had higher rates of fusion (97.87% vs. 81.11%; p = 0.006) and lower rates of subsidence (6.38% vs. 38.46%; p < 0.001) compared with MIS TLIF. There were significantly fewer returns to the OR within 1 year for early mechanical failures with L-SPS (0.0% vs. 5.4%; p < 0.001). 1-year radiographic outcomes revealed that the L-SPS cohort had a greater LL (56.6 ± 12.5 vs. 51.1 ± 15.9; p = 0.004), smaller PI-LL mismatch (0.2 ± 13.0 vs. 5.5 ± 10.5; p = 0.004). There were no significant differences in amount of change in VAS scores between cohorts. Similar results were seen after propensity-matched analysis and sub-analysis of cases including L5-S1.
CONCLUSIONS: L-SPS improves perioperative outcomes and does not compromise clinical or radiographic results at 1-year follow-up compared with MIS TLIF. There may be decreased rates of early mechanical failure with L-SPS.

Keywords

References

  1. Buckland AJ, Ashayeri K, Leon C, Manning J, Eisen L, Medley M, Protopsaltis TS, Thomas JA (2021) Single position circumferential fusion improves operative efficiency, reduces complications and length of stay compared with traditional circumferential fusion. Spine J 21:810–820. https://doi.org/10.1016/j.spinee.2020.11.002 [DOI: 10.1016/j.spinee.2020.11.002]
  2. Kim CH, Easley K, Lee JS, Hong JY, Virk M, Hsieh PC, Yoon ST (2020) Comparison of minimally invasive versus open transforaminal interbody lumbar fusion. Glob Spine J 10:143s–150s. https://doi.org/10.1177/2192568219882344 [DOI: 10.1177/2192568219882344]
  3. Klineberg EO, Passias PG, Poorman GW, Jalai CM, Atanda A, Worley N, Horn S, Sciubba DM, Hamilton DK, Burton DC, Gupta MC, Smith JS, Soroceanu A, Hart RA, Neuman B, Ames CP, Schwab FJ, Lafage V (2020) Classifying complications: assessing adult spinal deformity 2-year surgical outcomes. Glob Spine J 10:896–907. https://doi.org/10.1177/2192568220937473 [DOI: 10.1177/2192568220937473]
  4. Hackenberg L, Halm H, Bullmann V, Vieth V, Schneider M, Liljenqvist U (2005) Transforaminal lumbar interbody fusion: a safe technique with satisfactory three to 5 year results. Eur Spine J 14:551–558. https://doi.org/10.1007/s00586-004-0830-1 [DOI: 10.1007/s00586-004-0830-1]
  5. Lee MJ, Mok J, Patel P (2018) Transforaminal lumbar interbody fusion: traditional open versus minimally invasive techniques. J Am Acad Orthop Surg 26:124–131. https://doi.org/10.5435/jaaos-d-15-00756 [DOI: 10.5435/jaaos-d-15-00756]
  6. Cheng JS, Park P, Le H, Reisner L, Chou D, Mummaneni PV (2013) Short-term and long-term outcomes of minimally invasive and open transforaminal lumbar interbody fusions: Is there a difference? Neurosurg Focus 35:E6. https://doi.org/10.3171/2013.5.Focus1377 [DOI: 10.3171/2013.5.Focus1377]
  7. Hey HW, Hee HT (2015) Open and minimally invasive transforaminal lumbar interbody fusion: comparison of intermediate results and complications. Asian Spine J 9:185–193. https://doi.org/10.4184/asj.2015.9.2.185 [DOI: 10.4184/asj.2015.9.2.185]
  8. Parker SL, Mendenhall SK, Shau DN, Zuckerman SL, Godil SS, Cheng JS, McGirt MJ (2014) Minimally invasive versus open transforaminal lumbar interbody fusion for degenerative spondylolisthesis: comparative effectiveness and cost-utility analysis. World Neurosurg 82:230–238. https://doi.org/10.1016/j.wneu.2013.01.041 [DOI: 10.1016/j.wneu.2013.01.041]
  9. Safaee MM, Oh T, Pekmezci M, Clark AJ (2018) Radiation exposure with hybrid image-guidance-based minimally invasive transforaminal lumbar interbody fusion. J Clin Neurosci 48:122–127. https://doi.org/10.1016/j.jocn.2017.09.026 [DOI: 10.1016/j.jocn.2017.09.026]
  10. Bindal RK, Glaze S, Ognoskie M, Tunner V, Malone R, Ghosh S (2008) Surgeon and patient radiation exposure in minimally invasive transforaminal lumbar interbody fusion. J Neurosurg Spine 9:570–573. https://doi.org/10.3171/spi.2008.4.08182 [DOI: 10.3171/spi.2008.4.08182]
  11. Villavicencio AT, Burneikiene S, Bulsara KR, Thramann JJ (2006) Perioperative complications in transforaminal lumbar interbody fusion versus anterior-posterior reconstruction for lumbar disc degeneration and instability. J Spinal Disord Tech 19:92–97. https://doi.org/10.1097/01.bsd.0000185277.14484.4e [DOI: 10.1097/01.bsd.0000185277.14484.4e]
  12. Upadhyayula PS, Curtis EI, Yue JK, Sidhu N, Ciacci JD (2018) Anterior versus transforaminal lumbar interbody fusion: perioperative risk factors and 30-day outcomes. Int J Spine Surg 12:533–542. https://doi.org/10.14444/5065 [DOI: 10.14444/5065]
  13. Phan K, Xu J, Scherman DB, Rao PJ, Mobbs RJ (2017) Anterior Lumbar Interbody fusion with and without an “access surgeon”: a systematic review and meta-analysis. Spine 42:E592-e601. https://doi.org/10.1097/brs.0000000000001905 (Phila Pa 1976) [DOI: 10.1097/brs.0000000000001905]
  14. Hee HT, Castro FP Jr, Majd ME, Holt RT, Myers L (2001) Anterior/posterior lumbar fusion versus transforaminal lumbar interbody fusion: analysis of complications and predictive factors. J Spinal Disord 14:533–540. https://doi.org/10.1097/00002517-200112000-00013 [DOI: 10.1097/00002517-200112000-00013]
  15. Phan K, Thayaparan GK, Mobbs RJ (2015) Anterior lumbar interbody fusion versus transforaminal lumbar interbody fusion–systematic review and meta-analysis. Br J Neurosurg 29:705–711. https://doi.org/10.3109/02688697.2015.1036838 [DOI: 10.3109/02688697.2015.1036838]
  16. Kaye ID, Fang T, Wagner SC, Butler JS, Sebastian A, Morrissey PB, Levine MJ, Vaccaro AR, Hilibrand AS (2020) A comparison of revision rates and patient-reported outcomes for a 2-level posterolateral fusion augmented with single versus 2-level transforaminal lumbar interbody Fusion. Glob Spine J 10:958–963. https://doi.org/10.1177/2192568219889360 [DOI: 10.1177/2192568219889360]
  17. Lin GX, Sharma S, Rui G, Song MS, Kim JS (2020) Minimally invasive transforaminal lumbar interbody fusion with intraoperative fluoroscopy for disc space preparation: analysis of fusion rate and clinical results. Oper Neurosurg 19:557–566. https://doi.org/10.1093/ons/opaa178 (Hagerstown) [DOI: 10.1093/ons/opaa178]
  18. Emami A, Faloon M, Sahai N, Dunn CJ, Issa K, Thibaudeau D, Sinha K, Hwang KS (2018) Risk factors for pseudarthrosis in minimally-invasive transforaminal lumbar interbody fusion. Asian Spine J 12:830–838. https://doi.org/10.31616/asj.2018.12.5.830 [DOI: 10.31616/asj.2018.12.5.830]
  19. Serban D, Calina N, Tender G (2017) Standard versus minimally invasive transforaminal lumbar interbody fusion: a prospective randomized study. Biomed Res Int 2017:7236970. https://doi.org/10.1155/2017/7236970 [DOI: 10.1155/2017/7236970]
  20. Kleimeyer JP, Cheng I, Alamin TF, Hu SS, Cha T, Yanamadala V, Wood KB (2018) Selective anterior lumbar interbody fusion for low back pain associated with degenerative disc disease versus nonsurgical management. Spine 43:1372–1380. https://doi.org/10.1097/brs.0000000000002630 (Phila Pa 1976) [DOI: 10.1097/brs.0000000000002630]
  21. Rao PJ, Loganathan A, Yeung V, Mobbs RJ (2015) Outcomes of anterior lumbar interbody fusion surgery based on indication: a prospective study. Neurosurgery 76:7–24. https://doi.org/10.1227/neu.0000000000000561 [DOI: 10.1227/neu.0000000000000561]
  22. Strom RG, Bae J, Mizutani J, Valone F 3rd, Ames CP, Deviren V (2016) Lateral interbody fusion combined with open posterior surgery for adult spinal deformity. J Neurosurg Spine 25:697–705. https://doi.org/10.3171/2016.4.Spine16157 [DOI: 10.3171/2016.4.Spine16157]
  23. Dawson E, Bae HW, Burkus JK, Stambough JL, Glassman SD (2009) Recombinant human bone morphogenetic protein-2 on an absorbable collagen sponge with an osteoconductive bulking agent in posterolateral arthrodesis with instrumentation. a prospective randomized trial. J Bone Joint Surg Am 91:1604–1613. https://doi.org/10.2106/jbjs.G.01157 [DOI: 10.2106/jbjs.G.01157]
  24. Yao YC, Chou PH, Lin HH, Wang ST, Liu CL, Chang MC (2020) Risk factors of cage subsidence in patients received minimally invasive transforaminal lumbar interbody fusion. Spine 45:E1279-e1285. https://doi.org/10.1097/brs.0000000000003557 (Phila Pa 1976) [DOI: 10.1097/brs.0000000000003557]
  25. Pisano AJ, Fredericks DR, Steelman T, Riccio C, Helgeson MD, Wagner SC (2020) Lumbar disc height and vertebral Hounsfield units: association with interbody cage subsidence. Neurosurg Focus 49:E9. https://doi.org/10.3171/2020.4.Focus20286 [DOI: 10.3171/2020.4.Focus20286]
  26. Lee N, Kim KN, Yi S, Ha Y, Shin DA, Yoon DH, Kim KS (2017) Comparison of outcomes of anterior, posterior, and transforaminal lumbar interbody fusion surgery at a single lumbar level with degenerative spinal disease. World Neurosurg 101:216–226. https://doi.org/10.1016/j.wneu.2017.01.114 [DOI: 10.1016/j.wneu.2017.01.114]
  27. Tempel ZJ, McDowell MM, Panczykowski DM, Gandhoke GS, Hamilton DK, Okonkwo DO, Kanter AS (2018) Graft subsidence as a predictor of revision surgery following stand-alone lateral lumbar interbody fusion. J Neurosurg Spine 28:50–56. https://doi.org/10.3171/2017.5.Spine16427 [DOI: 10.3171/2017.5.Spine16427]
  28. Ahlquist S, Park HY, Gatto J, Shamie AN, Park DY (2018) Does approach matter? A comparative radiographic analysis of spinopelvic parameters in single-level lumbar fusion. Spine J 18:1999–2008. https://doi.org/10.1016/j.spinee.2018.03.014 [DOI: 10.1016/j.spinee.2018.03.014]
  29. Hsieh PC, Koski TR, O’Shaughnessy BA, Sugrue P, Salehi S, Ondra S, Liu JC (2007) Anterior lumbar interbody fusion in comparison with transforaminal lumbar interbody fusion: implications for the restoration of foraminal height, local disc angle, lumbar lordosis, and sagittal balance. J Neurosurg Spine 7:379–386. https://doi.org/10.3171/spi-07/10/379 [DOI: 10.3171/spi-07/10/379]
  30. Kim JS, Kang BU, Lee SH, Jung B, Choi YG, Jeon SH, Lee HY (2009) Mini-transforaminal lumbar interbody fusion versus anterior lumbar interbody fusion augmented by percutaneous pedicle screw fixation: a comparison of surgical outcomes in adult low-grade isthmic spondylolisthesis. J Spinal Disord Tech 22:114–121. https://doi.org/10.1097/BSD.0b013e318169bff5 [DOI: 10.1097/BSD.0b013e318169bff5]
  31. Sembrano JN, Yson SC, Horazdovsky RD, Santos ER, Polly DW Jr (2015) Radiographic comparison of lateral lumbar interbody fusion versus traditional fusion approaches: analysis of sagittal contour change. Int J Spine Surg 9:16. https://doi.org/10.14444/2016 [DOI: 10.14444/2016]
  32. Adogwa O, Buchowski JM, Lenke LG, Shlykov MA, El Dafrawy M, Lertudomphonwanit T, Obey MR, Koscso J, Gupta MC, Bridwell KH (2019) Comparison of rod fracture rates in long spinal deformity constructs after transforaminal versus anterior lumbar interbody fusions: a single-institution analysis. J Neurosurg Spine 32(1):42–49. https://doi.org/10.3171/2019.7.Spine19630 [DOI: 10.3171/2019.7.Spine19630]

MeSH Term

Follow-Up Studies
Humans
Lumbar Vertebrae
Minimally Invasive Surgical Procedures
Retrospective Studies
Spinal Fusion
Treatment Outcome

Word Cloud

Created with Highcharts 10.0.0fusionL-SPSMISTLIFlumbarinterbodyvs1-yearoutcomescomparedcohort5positioninvasivetransforaminalradiographicp < 0significantlyfollow-upratesp = 00resultsperioperativedecubitussingleminimallypatientsAPclinicalfewer001earlymechanical004LateralPURPOSE:studycompareslateralcircumferentialversusdegenerativepathologiesMETHODS:MulticenterretrospectivechartreviewundergoingDemographicsusingindependentsamplesttestschi-squaredanalysessignificanceset05RESULTS:total445included:35392olderdiabeticslevelsfusedshorteroperativetimebloodlossradiationdosagelengthstayshowedhigher9787%8111%006lowersubsidence638%3846%returnsORwithin1 yearfailures0%4%revealedgreaterLL566 ± 12511 ± 159smallerPI-LLmismatch2 ± 135 ± 10significantdifferencesamountchangeVASscorescohortsSimilarseenpropensity-matchedanalysissub-analysiscasesincludingL5-S1CONCLUSIONS:improvescompromisemaydecreasedfailureanterior-posteriorshowsequivalentone-yearAnteriorALIFLLIFMinimallySingle

Similar Articles

Cited By

No available data.