EgSPEECHLESS Responses to Salt Stress by Regulating Stomatal Development in Oil Palm.

Zhuojun Song, Le Wang, Chongcheong Lai, May Lee, Zituo Yang, Genhua Yue
Author Information
  1. Zhuojun Song: Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore. ORCID
  2. Le Wang: Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
  3. Chongcheong Lai: Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
  4. May Lee: Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
  5. Zituo Yang: Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
  6. Genhua Yue: Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.

Abstract

Oil palm is the most productive oil producing plant. Salt stress leads to growth damage and a decrease in yield of oil palm. However, the physiological responses of oil palm to salt stress and their underlying mechanisms are not clear. RNA-Seq was conducted on control and leaf samples from young palms challenged under three levels of salts (100, 250, and 500 mM NaCl) for 14 days. All three levels of salt stress activated EgSPCH expression and increased stomatal density of oil palm. Around 41% of differential expressed genes (DEGs) were putative EgSPCH binding target and were involved in multiple bioprocesses related to salt response. Overexpression of EgSPCH in Arabidopsis increased the stomatal production and lowered the salt tolerance. These data indicate that, in oil palm, salt activates EgSPCH to generate more stomata in response to salt stress, which differs from herbaceous plants. Our results might mirror the difference of salt-induced stomatal development between ligneous and herbaceous crops.

Keywords

References

  1. Plant Signal Behav. 2007 Jul;2(4):290-2 [PMID: 19704685]
  2. Annu Rev Plant Biol. 2020 Apr 29;71:403-433 [PMID: 32167791]
  3. Trends Plant Sci. 2014 Jun;19(6):371-9 [PMID: 24630845]
  4. Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):13123-13128 [PMID: 30514814]
  5. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  6. New Phytol. 2019 Jul;223(1):220-232 [PMID: 30825332]
  7. Curr Biol. 2018 Mar 5;28(5):666-675.e5 [PMID: 29456142]
  8. Nat Protoc. 2006;1(2):641-6 [PMID: 17406292]
  9. Front Plant Sci. 2017 Jun 30;8:1151 [PMID: 28713411]
  10. PLoS One. 2016 Oct 5;11(10):e0163962 [PMID: 27706213]
  11. Plant Physiol. 2017 Jun;174(2):776-787 [PMID: 28461401]
  12. Curr Opin Plant Biol. 2018 Dec;46:87-95 [PMID: 30138845]
  13. Nat Rev Genet. 2022 Feb;23(2):104-119 [PMID: 34561623]
  14. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  15. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  16. Front Plant Sci. 2014 Apr 22;5:151 [PMID: 24795738]
  17. Plant Cell. 2012 Jun;24(6):2546-61 [PMID: 22730405]
  18. Int J Genomics. 2016;2016:7840759 [PMID: 27840818]
  19. Plant Physiol Biochem. 2020 Sep;154:379-386 [PMID: 32623093]
  20. Int J Mol Sci. 2019 Feb 15;20(4): [PMID: 30781340]
  21. Plant Cell Physiol. 2014 Dec;55(12):2037-46 [PMID: 25381317]
  22. Rice (N Y). 2013 Oct 28;6(1):27 [PMID: 24280112]
  23. Science. 2008 Nov 14;322(5904):1113-6 [PMID: 19008449]
  24. Trends Ecol Evol. 2008 Oct;23(10):538-45 [PMID: 18775582]
  25. Plant Cell Rep. 2011 Aug;30(8):1383-91 [PMID: 21476089]
  26. New Phytol. 2005 Sep;167(3):645-63 [PMID: 16101905]
  27. Plant Physiol Biochem. 2013 Dec;73:114-20 [PMID: 24080398]
  28. DNA Res. 2016 Dec;23(6):527-533 [PMID: 27426468]
  29. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  30. Curr Protoc Bioinformatics. 2002 Aug;Chapter 2:Unit 2.3 [PMID: 18792934]
  31. Sci Rep. 2020 Dec 4;10(1):21303 [PMID: 33277563]
  32. Science. 2014 Sep 26;345(6204):1605-9 [PMID: 25190717]
  33. J Mol Biol. 2016 Feb 22;428(4):726-731 [PMID: 26585406]
  34. BMC Bioinformatics. 2018 Dec 19;19(1):534 [PMID: 30567491]
  35. Plant Physiol. 2016 Jan;170(1):429-43 [PMID: 26564152]
  36. Nature. 2013 Aug 15;500(7462):335-9 [PMID: 23883927]
  37. Nature. 2003 Aug 21;424(6951):901-8 [PMID: 12931178]
  38. Biosci Biotechnol Biochem. 2007 Aug;71(8):2095-100 [PMID: 17690442]
  39. Plant Cell Environ. 2020 Sep;43(9):2301-2310 [PMID: 32542660]
  40. J Integr Plant Biol. 2018 Sep;60(9):796-804 [PMID: 29905393]
  41. Database (Oxford). 2018 Jan 1;2018: [PMID: 30239681]
  42. Plant Physiol. 2017 Dec;175(4):1807-1825 [PMID: 29051198]
  43. Comput Appl Biosci. 1992 Jun;8(3):275-82 [PMID: 1633570]

Grants

  1. 9200/Internal funds of Temasek Lifesciences Laboratory

MeSH Term

Arabidopsis
Gene Expression Regulation, Plant
Plant Leaves
Plant Stomata
Salt Stress
Salt Tolerance
Stress, Physiological

Word Cloud

Created with Highcharts 10.0.0saltpalmoilstressEgSPCHstomatalOilSaltthreelevelsincreasedresponsestomataherbaceousproductiveproducingplantleadsgrowthdamagedecreaseyieldHoweverphysiologicalresponsesunderlyingmechanismsclearRNA-Seqconductedcontrolleafsamplesyoungpalmschallengedsalts100250500mMNaCl14daysactivatedexpressiondensityAround41%differentialexpressedgenesDEGsputativebindingtargetinvolvedmultiplebioprocessesrelatedOverexpressionArabidopsisproductionloweredtolerancedataindicateactivatesgeneratediffersplantsresultsmightmirrordifferencesalt-induceddevelopmentligneouscropsEgSPEECHLESSResponsesStressRegulatingStomatalDevelopmentPalmSPEECHLESSsignalling

Similar Articles

Cited By