Multivariant Transcriptome Analysis Identifies Modules and Hub Genes Associated with Poor Outcomes in Newly Diagnosed Multiple Myeloma Patients.

Olayinka O Adebayo, Eric B Dammer, Courtney D Dill, Adeyinka O Adebayo, Saheed O Oseni, Ti'ara L Griffen, Adaugo Q Ohandjo, Fengxia Yan, Sanjay Jain, Benjamin G Barwick, Rajesh Singh, Lawrence H Boise, James W Lillard
Author Information
  1. Olayinka O Adebayo: Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA.
  2. Eric B Dammer: Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA. ORCID
  3. Courtney D Dill: Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA.
  4. Adeyinka O Adebayo: Georgia Institute of Technology, Atlanta, GA 30332, USA.
  5. Saheed O Oseni: Department of Immunology, Moffitt Cancer Center, Tampa, FL 33612, USA. ORCID
  6. Ti'ara L Griffen: Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA. ORCID
  7. Adaugo Q Ohandjo: East-West Collaborative Research, Marietta, GA 30060, USA.
  8. Fengxia Yan: Department of Community Health and Preventive Medicine, Morehouse School of Medicine, Atlanta, GA 30310, USA.
  9. Sanjay Jain: Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA.
  10. Benjamin G Barwick: Winship Cancer Institute, 1365 Clifton Road NE, Atlanta, GA 30322, USA. ORCID
  11. Rajesh Singh: Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA. ORCID
  12. Lawrence H Boise: Winship Cancer Institute, 1365 Clifton Road NE, Atlanta, GA 30322, USA. ORCID
  13. James W Lillard: Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA.

Abstract

The molecular mechanisms underlying chemoresistance in some newly diagnosed multiple myeloma (MM) patients receiving standard therapies (lenalidomide, bortezomib, and dexamethasone) are poorly understood. Identifying clinically relevant gene networks associated with death due to MM may uncover novel mechanisms, drug targets, and prognostic biomarkers to improve the treatment of the disease. This study used data from the MMRF CoMMpass RNA-seq dataset (N = 270) for weighted gene co-expression network analysis (WGCNA), which identified 21 modules of co-expressed genes. Genes differentially expressed in patients with poor outcomes were assessed using two independent sample -tests (dead and alive MM patients). The clinical performance of biomarker candidates was evaluated using overall survival via a log-rank Kaplan-Meier and ROC test. Four distinct modules (M10, M13, M15, and M20) were significantly correlated with MM vital status and differentially expressed between the dead (poor outcomes) and the alive MM patients within two years. The biological functions of modules positively correlated with death (M10, M13, and M20) were G-protein coupled receptor protein, cell-cell adhesion, cell cycle regulation genes, and cellular membrane fusion genes. In contrast, a negatively correlated module to MM mortality (M15) was the regulation of B-cell activation and lymphocyte differentiation. MM biomarkers , , , , and were co-expressed in positively correlated modules to MM vital status, which was associated with MM's lower overall survival.

Keywords

References

  1. Biomed Res Int. 2014;2014:273180 [PMID: 25313354]
  2. Autoimmun Rev. 2015 Nov;14(11):1048-56 [PMID: 26226414]
  3. Oncol Lett. 2020 Jul;20(1):275-291 [PMID: 32565954]
  4. Blood. 2006 Sep 15;108(6):2020-8 [PMID: 16728703]
  5. Oncotarget. 2020 Feb 18;11(7):727-739 [PMID: 32133047]
  6. Blood Adv. 2020 Jan 28;4(2):422-431 [PMID: 31990333]
  7. Stem Cells Dev. 2007 Dec;16(6):921-30 [PMID: 17927494]
  8. Cancers (Basel). 2019 Nov 05;11(11): [PMID: 31694338]
  9. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  10. Front Neurosci. 2020 Nov 06;14:600099 [PMID: 33240041]
  11. Cell Mol Life Sci. 2021 Aug;78(15):5667-5679 [PMID: 34152447]
  12. JAMA Oncol. 2018 Sep 1;4(9):1221-1227 [PMID: 29800065]
  13. Bioinformatics. 2012 Aug 15;28(16):2209-10 [PMID: 22743224]
  14. Virchows Arch. 2020 Mar;476(3):337-351 [PMID: 31848687]
  15. Mod Pathol. 2014 Sep;27(9):1238-45 [PMID: 24457462]
  16. Haematologica. 2021 Apr 01;106(4):958-967 [PMID: 32381576]
  17. Biosci Rep. 2015 Apr 28;35(2): [PMID: 25797907]
  18. Genes Brain Behav. 2014 Jan;13(1):13-24 [PMID: 24320616]
  19. Leuk Lymphoma. 1998 Oct;31(3-4):379-84 [PMID: 9869202]
  20. Stem Cells Dev. 2006 Jun;15(3):305-13 [PMID: 16846369]
  21. Nat Med. 2020 May;26(5):769-780 [PMID: 32284590]
  22. Cancer Gene Ther. 2020 Feb;27(1-2):22-29 [PMID: 30622325]
  23. N Engl J Med. 1996 Jul 11;335(2):91-7 [PMID: 8649495]
  24. Front Immunol. 2019 May 21;10:1121 [PMID: 31231360]
  25. Sci Rep. 2020 May 6;10(1):7662 [PMID: 32376943]
  26. Rev Neurol (Paris). 1997;153 Suppl 1:S39-45 [PMID: 9686247]
  27. Haematologica. 2020 Jul;105(7):1937-1947 [PMID: 31582542]
  28. Blood. 2014 Sep 18;124(12):1873-9 [PMID: 25097176]
  29. Trends Pharmacol Sci. 2018 Jul;39(7):672-684 [PMID: 29739625]
  30. J Cell Biochem. 2020 Jun;121(5-6):3058-3069 [PMID: 31886574]
  31. Science. 2014 Jan 17;343(6168):301-5 [PMID: 24292625]
  32. BMC Med Genomics. 2021 Jun 29;14(1):171 [PMID: 34187466]
  33. J Cell Biochem. 2011 May;112(5):1277-85 [PMID: 21308741]
  34. Exp Mol Pathol. 2010 Oct;89(2):175-81 [PMID: 20621094]
  35. J Clin Oncol. 2020 Oct 1;38(28):3325-3348 [PMID: 32663120]
  36. CA Cancer J Clin. 2021 Jan;71(1):7-33 [PMID: 33433946]
  37. Semin Cancer Biol. 2015 Feb;30:60-9 [PMID: 24657638]
  38. Int J Lab Hematol. 2021 Jun;43(3):403-408 [PMID: 33185981]
  39. Blood Adv. 2017 Dec 26;1(27):2799-2816 [PMID: 29296932]
  40. Mol Carcinog. 2018 Apr;57(4):494-502 [PMID: 29240260]
  41. iScience. 2021 Apr 19;24(5):102451 [PMID: 34007962]
  42. Biochim Biophys Acta. 2011 Dec;1816(2):105-18 [PMID: 21616127]
  43. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2016 Dec;24(6):1801-1806 [PMID: 28024497]
  44. Blood. 2010 Dec 16;116(25):5501-6 [PMID: 20823456]
  45. FASEB J. 2010 Apr;24(4):1218-28 [PMID: 19959723]
  46. Sci Rep. 2019 Oct 18;9(1):14963 [PMID: 31628349]
  47. Brain Pathol. 2021 Jul;31(4):e12918 [PMID: 33141488]
  48. Nucleic Acids Res. 2016 Jul 8;44(W1):W90-7 [PMID: 27141961]
  49. Genomics. 2013 Oct;102(4):243-9 [PMID: 23831116]
  50. Nucleic Acids Res. 2017 Jan 4;45(D1):D362-D368 [PMID: 27924014]
  51. Atherosclerosis. 2020 Apr;298:58-69 [PMID: 32171981]
  52. Cancer Treat Rev. 2018 Jun;67:54-62 [PMID: 29763778]
  53. N Engl J Med. 2003 May 8;348(19):1875-83 [PMID: 12736280]

Grants

  1. U54 CA118638/NCI NIH HHS
  2. C06 RR018386/NCRR NIH HHS
  3. U54CA118638/NCI NIH HHS
  4. G12MD007602/NIMHD NIH HHS
  5. U54MD007602/NIMHD NIH HHS
  6. T32 HL103104/NHLBI NIH HHS

Word Cloud

Created with Highcharts 10.0.0MMpatientsmodulescorrelatedgenesmechanismschemoresistancemultiplemyelomageneassociateddeathbiomarkersWGCNAco-expressedGenesdifferentiallyexpressedpooroutcomesusingtwodeadaliveoverallsurvivallog-rankROCM10M13M15M20vitalstatuspositivelyregulationmolecularunderlyingnewlydiagnosedreceivingstandardtherapieslenalidomidebortezomibdexamethasonepoorlyunderstoodIdentifyingclinicallyrelevantnetworksduemayuncovernoveldrugtargetsprognosticimprovetreatmentdiseasestudyuseddataMMRFCoMMpassRNA-seqdatasetN=270weightedco-expressionnetworkanalysisidentified21assessedindependentsample-testsclinicalperformancebiomarkercandidatesevaluatedviaKaplan-MeiertestFourdistinctsignificantlywithinyearsbiologicalfunctionsG-proteincoupledreceptorproteincell-celladhesioncellcyclecellularmembranefusioncontrastnegativelymodulemortalityB-cellactivationlymphocytedifferentiationMM'slowerMultivariantTranscriptomeAnalysisIdentifiesModulesHubAssociatedPoorOutcomesNewlyDiagnosedMultipleMyelomaPatientsKaplan–Meier

Similar Articles

Cited By