Short-Term Very High Carbohydrate Diet and Gut-Training Have Minor Effects on Gastrointestinal Status and Performance in Highly Trained Endurance Athletes.

Andy J King, Naroa Etxebarria, Megan L Ross, Laura Garvican-Lewis, Ida A Heikura, Alannah K A McKay, Nicolin Tee, Sara F Forbes, Nicole A Beard, Philo U Saunders, Avish P Sharma, Stephanie K Gaskell, Ricardo J S Costa, Louise M Burke
Author Information
  1. Andy J King: Exercise & Nutrition Research Program, The Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia. ORCID
  2. Naroa Etxebarria: Research Institute for Sport and Exercise, University of Canberra, Bruce, ACT 2617, Australia. ORCID
  3. Megan L Ross: Exercise & Nutrition Research Program, The Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia.
  4. Laura Garvican-Lewis: Exercise & Nutrition Research Program, The Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia.
  5. Ida A Heikura: Exercise & Nutrition Research Program, The Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia.
  6. Alannah K A McKay: Exercise & Nutrition Research Program, The Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia.
  7. Nicolin Tee: Australian Institute of Sport, Leverrier Street, Canberra, ACT 2617, Australia. ORCID
  8. Sara F Forbes: UniSA Online, University of South Australia, Adelaide, SA 5001, Australia. ORCID
  9. Nicole A Beard: Faculty of Science and Technology, University of Canberra, Bruce, ACT 2617, Australia.
  10. Philo U Saunders: Australian Institute of Sport, Leverrier Street, Canberra, ACT 2617, Australia.
  11. Avish P Sharma: School of Allied Health Sciences, Griffith University, Gold Coast, QLD 4222, Australia.
  12. Stephanie K Gaskell: Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3800, Australia.
  13. Ricardo J S Costa: Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC 3800, Australia.
  14. Louise M Burke: Exercise & Nutrition Research Program, The Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia. ORCID

Abstract

We implemented a multi-pronged strategy (MAX) involving chronic (2 weeks high carbohydrate [CHO] diet + gut-training) and acute (CHO loading + 90 g·h−1 CHO during exercise) strategies to promote endogenous and exogenous CHO availability, compared with strategies reflecting lower ranges of current guidelines (CON) in two groups of athletes. Nineteen elite male race walkers (MAX: 9; CON:10) undertook a 26 km race-walking session before and after the respective interventions to investigate gastrointestinal function (absorption capacity), integrity (epithelial injury), and symptoms (GIS). We observed considerable individual variability in responses, resulting in a statistically significant (p < 0.001) yet likely clinically insignificant increase (Δ 736 pg·mL−1) in I-FABP after exercise across all trials, with no significant differences in breath H2 across exercise (p = 0.970). MAX was associated with increased GIS in the second half of the exercise, especially in upper GIS (p < 0.01). Eighteen highly trained male and female distance runners (MAX: 10; CON: 8) then completed a 35 km run (28 km steady-state + 7 km time-trial) supported by either a slightly modified MAX or CON strategy. Inter-individual variability was observed, without major differences in epithelial cell intestinal fatty acid binding protein (I-FABP) or GIS, due to exercise, trial, or group, despite the 3-fold increase in exercise CHO intake in MAX post-intervention. The tight-junction (claudin-3) response decreased in both groups from pre- to post-intervention. Groups achieved a similar performance improvement from pre- to post-intervention (CON = 39 s [95 CI 15−63 s]; MAX = 36 s [13−59 s]; p = 0.002). Although this suggests that further increases in CHO availability above current guidelines do not confer additional advantages, limitations in our study execution (e.g., confounding loss of BM in several individuals despite a live-in training camp environment and significant increases in aerobic capacity due to intensified training) may have masked small differences. Therefore, athletes should meet the minimum CHO guidelines for training and competition goals, noting that, with practice, increased CHO intake can be tolerated, and may contribute to performance outcomes.

Keywords

References

  1. Med Sci Sports Exerc. 2022 Jan 1;54(1):129-140 [PMID: 34334720]
  2. Metabolism. 2016 Mar;65(3):100-10 [PMID: 26892521]
  3. J Appl Physiol (1985). 2010 Jul;109(1):126-34 [PMID: 20466803]
  4. Front Physiol. 2021 Sep 07;12:719142 [PMID: 34557109]
  5. Aliment Pharmacol Ther. 2009 Mar 30;29 Suppl 1:1-49 [PMID: 19344474]
  6. J Appl Physiol (1985). 2019 May 1;126(5):1281-1291 [PMID: 30896356]
  7. Appl Physiol Nutr Metab. 2014 Sep;39(9):998-1011 [PMID: 24951297]
  8. Int J Sports Med. 2005 Apr;26(3):171-6 [PMID: 15776331]
  9. J Appl Physiol (1985). 2021 Feb 1;130(2):369-379 [PMID: 33151776]
  10. Proc Natl Acad Sci U S A. 2007 Sep 18;104(38):15075-80 [PMID: 17724332]
  11. Science. 2018 Nov 16;362(6416):781-787 [PMID: 30442803]
  12. Eur J Appl Physiol. 2010 Sep;110(2):379-87 [PMID: 20503055]
  13. Appl Physiol Nutr Metab. 2017 Dec;42(12):1283-1292 [PMID: 28777927]
  14. Nutrients. 2014 Oct 13;6(10):4191-9 [PMID: 25314645]
  15. Int J Sport Nutr Exerc Metab. 2019 Mar 1;29(2):130-140 [PMID: 30943823]
  16. Appl Physiol Nutr Metab. 2020 Oct;45(10):1145-1155 [PMID: 32365303]
  17. Med Sci Sports Exerc. 2013 Feb;45(2):336-41 [PMID: 22968309]
  18. Med Sci Sports Exerc. 2021 May 1;53(5):1056-1067 [PMID: 33065594]
  19. Int J Sports Physiol Perform. 2013 Jul;8(4):435-41 [PMID: 23237850]
  20. Sports Med. 2017 Mar;47(Suppl 1):101-110 [PMID: 28332114]
  21. Int J Sports Physiol Perform. 2021 May 27;16(12):1764-1776 [PMID: 34044369]
  22. Nat Metab. 2020 Sep;2(9):817-828 [PMID: 32747792]
  23. Med Sci Sports Exerc. 1991 Mar;23(3):307-13 [PMID: 1875801]
  24. Int J Sports Med. 2008 Nov;29(11):878-82 [PMID: 18512180]
  25. J Nutr Biochem. 1999 Jan;10(1):8-12 [PMID: 15539244]
  26. Med Sci Sports Exerc. 2020 Aug;52(8):1785-1792 [PMID: 32079920]
  27. Scand J Med Sci Sports. 2010 Oct;20 Suppl 2:48-58 [PMID: 20840562]
  28. Aliment Pharmacol Ther. 2017 Aug;46(3):246-265 [PMID: 28589631]
  29. Med Sci Sports Exerc. 2016 Mar;48(3):543-68 [PMID: 26891166]
  30. Appl Physiol Nutr Metab. 2017 May;42(5):547-557 [PMID: 28177715]
  31. Int J Sport Nutr Exerc Metab. 2016 Oct;26(5):481-487 [PMID: 27097380]
  32. Med Sci Sports Exerc. 1982;14(5):377-81 [PMID: 7154893]
  33. Sports Med. 2021 Jan;51(1):113-124 [PMID: 33201454]
  34. Front Nutr. 2021 Jan 14;7:622270 [PMID: 33521041]
  35. Med Sci Sports Exerc. 2012 Feb;44(2):344-51 [PMID: 21775906]
  36. Physiol Rep. 2018 Jan;6(1): [PMID: 29333721]
  37. J Sci Med Sport. 2018 Aug;21(8):771-776 [PMID: 29371075]
  38. Eur J Appl Physiol. 2018 Feb;118(2):389-400 [PMID: 29234915]
  39. Int J Sport Nutr Exerc Metab. 2019 Mar 1;29(2):117-129 [PMID: 30747558]
  40. Br J Sports Med. 2014 Jun;48(12):980-6 [PMID: 23134759]
  41. Med Sci Sports Exerc. 2018 Jan;50(1):116-123 [PMID: 28891824]
  42. Ann N Y Acad Sci. 2017 Jun;1397(1):66-79 [PMID: 28493289]
  43. Int J Sport Nutr Exerc Metab. 2018 Sep 1;28(5):480-489 [PMID: 29431534]
  44. Scand J Med Sci Sports. 2018 Feb;28(2):630-640 [PMID: 28508559]
  45. J Physiol. 2021 Feb;599(3):771-790 [PMID: 32697366]
  46. Med Sci Sports Exerc. 2019 Mar;51(3):436-444 [PMID: 30299412]
  47. Eur J Gastroenterol Hepatol. 2010 Mar;22(3):318-26 [PMID: 19636251]
  48. Proc Nutr Soc. 2011 May;70(2):185-93 [PMID: 21450125]
  49. Int J Sport Nutr Exerc Metab. 2019 Jan 1;29(1):61-67 [PMID: 29757053]
  50. J Physiol. 2017 May 1;595(9):2785-2807 [PMID: 28012184]
  51. Int J Sports Physiol Perform. 2022 Dec 29;17(2):317-331 [PMID: 34965513]
  52. Front Nutr. 2020 Jun 12;7:88 [PMID: 32596251]
  53. Int J Sport Nutr Exerc Metab. 2016 Jun;26(3):259-67 [PMID: 24458265]
  54. Appl Physiol Nutr Metab. 2020 Jun;45(6):569-580 [PMID: 31652404]
  55. Int J Sport Nutr Exerc Metab. 2019 Feb 22;29(4):411–419 [PMID: 30632417]
  56. Med Sci Sports Exerc. 2002 Sep;34(9):1492-8 [PMID: 12218744]
  57. Nutrients. 2021 Aug 12;13(8): [PMID: 34444928]
  58. Front Physiol. 2022 Jan 04;12:773054 [PMID: 35058795]
  59. J Sports Med Phys Fitness. 1991 Jun;31(2):231-4 [PMID: 1753730]
  60. Int J Sports Med. 2018 Feb 07;: [PMID: 29415294]
  61. Nutrients. 2017 Feb 10;9(2): [PMID: 28208581]
  62. PLoS One. 2020 Jun 4;15(6):e0234027 [PMID: 32497061]
  63. Int J Sport Nutr Exerc Metab. 2020 Jul 23;30(5):305-314 [PMID: 32707564]
  64. Sports Med Open. 2016;2:16 [PMID: 26767151]
  65. Front Physiol. 2021 Feb 04;12:628863 [PMID: 33613323]
  66. J Physiol. 2021 Feb;599(3):819-843 [PMID: 32358802]
  67. Eur J Appl Physiol. 2021 Oct;121(10):2657-2674 [PMID: 34131799]
  68. Temperature (Austin). 2019 May 7;7(1):58-88 [PMID: 32166105]

Grants

  1. 1a/The alliance for potato research and education

MeSH Term

Athletes
Diet
Dietary Carbohydrates
Female
Humans
Male
Physical Endurance
Walking

Chemicals

Dietary Carbohydrates

Word Cloud

Created with Highcharts 10.0.0CHOexerciseMAXkmGISp0=+guidelinesCONsignificantdifferencespost-interventionperformancetrainingstrategystrategiesavailabilitycurrentgroupsathletesmaleMAX:gastrointestinalcapacityepithelialsymptomsobservedvariability<increaseI-FABPacrossbreathincreasedintestinalfattyacidbindingproteinduedespiteintakeclaudin-3pre-ss]increasesmayimplementedmulti-prongedinvolvingchronic2weekshighcarbohydrate[CHO]dietgut-trainingacuteloading90g·h−1promoteendogenousexogenouscomparedreflectinglowerrangestwoNineteeneliteracewalkers9CON:10undertook26race-walkingsessionrespectiveinterventionsinvestigatefunctionabsorptionintegrityinjuryconsiderableindividualresponsesresultingstatistically001yetlikelyclinicallyinsignificantΔ736pg·mL−1trialsH2970associatedsecondhalfespeciallyupper01Eighteenhighlytrainedfemaledistancerunners10CON:8completed35run28steady-state7time-trialsupportedeitherslightlymodifiedInter-individualwithoutmajorcelltrialgroup3-foldtight-junctionresponsedecreasedGroupsachievedsimilarimprovement39[95CI15−6336[13−59002AlthoughsuggestsconferadditionaladvantageslimitationsstudyexecutionegconfoundinglossBMseveralindividualslive-incampenvironmentaerobicintensifiedmaskedsmallThereforemeetminimumcompetitiongoalsnotingpracticecantoleratedcontributeoutcomesShort-TermHighCarbohydrateDietGut-TrainingMinorEffectsGastrointestinalStatusPerformanceHighlyTrainedEnduranceAthletesathletichydrogenmarathonnutritionrunning

Similar Articles

Cited By