Modeling the Repetition-Based Recovering of Acoustic and Visual Sources With Dendritic Neurons.

Giorgia Dellaferrera, Toshitake Asabuki, Tomoki Fukai
Author Information
  1. Giorgia Dellaferrera: Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, Okinawa, Japan.
  2. Toshitake Asabuki: Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, Okinawa, Japan.
  3. Tomoki Fukai: Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, Okinawa, Japan.

Abstract

In natural auditory environments, acoustic signals originate from the temporal superimposition of different sound sources. The problem of inferring individual sources from ambiguous mixtures of sounds is known as blind source decomposition. Experiments on humans have demonstrated that the auditory system can identify sound sources as repeating patterns embedded in the acoustic input. Source repetition produces temporal regularities that can be detected and used for segregation. Specifically, listeners can identify sounds occurring more than once across different mixtures, but not sounds heard only in a single mixture. However, whether such a behavior can be computationally modeled has not yet been explored. Here, we propose a biologically inspired computational model to perform blind source separation on sequences of mixtures of acoustic stimuli. Our method relies on a somatodendritic neuron model trained with a Hebbian-like learning rule which was originally conceived to detect spatio-temporal patterns recurring in synaptic inputs. We show that the segregation capabilities of our model are reminiscent of the features of human performance in a variety of experimental settings involving synthesized sounds with naturalistic properties. Furthermore, we extend the study to investigate the properties of segregation on task settings not yet explored with human subjects, namely natural sounds and images. Overall, our work suggests that somatodendritic neuron models offer a promising neuro-inspired learning strategy to account for the characteristics of the brain segregation capabilities as well as to make predictions on yet untested experimental settings.

Keywords

References

  1. Cereb Cortex. 2015 Jul;25(7):1697-706 [PMID: 24429136]
  2. Trends Neurosci. 2013 Mar;36(3):141-51 [PMID: 23273272]
  3. Cereb Cortex. 2018 Oct 1;28(10):3623-3637 [PMID: 29029039]
  4. J Cogn Neurosci. 2005 Nov;17(11):1704-13 [PMID: 16269107]
  5. J Neurosci. 2006 Jul 12;26(28):7477-90 [PMID: 16837596]
  6. Annu Rev Psychol. 2018 Jan 4;69:27-50 [PMID: 29035691]
  7. J Comp Psychol. 2008 Aug;122(3):235-51 [PMID: 18729652]
  8. Elife. 2013 Jul 23;2:e00699 [PMID: 23898398]
  9. Nat Neurosci. 2007 Dec;10(12):1601-7 [PMID: 17994016]
  10. Front Neurosci. 2015 Sep 02;9:309 [PMID: 26388721]
  11. J Acoust Soc Am. 2004 Feb;115(2):833-43 [PMID: 15000195]
  12. Hear Res. 1990 Aug 1;47(1-2):103-38 [PMID: 2228789]
  13. Curr Biol. 2009 Dec 1;19(22):R1024-7 [PMID: 19948136]
  14. PLoS Comput Biol. 2014 Dec 18;10(12):e1003985 [PMID: 25521593]
  15. Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:2792-5 [PMID: 24110307]
  16. PLoS One. 2011;6(12):e28593 [PMID: 22163041]
  17. Nature. 1999 Mar 25;398(6725):338-41 [PMID: 10192334]
  18. Int J Neural Syst. 2000 Feb;10(1):1-8 [PMID: 10798706]
  19. eNeuro. 2016 Feb 02;3(1): [PMID: 26866056]
  20. Nature. 2000 Apr 20;404(6780):841-7 [PMID: 10786784]
  21. Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1188-93 [PMID: 21199948]
  22. Nature. 2012 May 10;485(7397):233-6 [PMID: 22522927]
  23. J Acoust Soc Am. 2008 Dec;124(6):3751-71 [PMID: 19206802]
  24. Neural Comput. 1995 Nov;7(6):1129-59 [PMID: 7584893]
  25. Trends Neurosci. 2001 Jan;24(1):54-63 [PMID: 11163888]
  26. J Neurosci. 2010 Jan 13;30(2):620-8 [PMID: 20071526]
  27. Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):E3313-E3322 [PMID: 29563229]
  28. J Neurophysiol. 2012 Jan;107(1):78-89 [PMID: 21975452]
  29. Neural Comput. 2001 Jul;13(7):1575-602 [PMID: 11440598]
  30. J Neurosci. 2013 Jan 23;33(4):1417-26 [PMID: 23345218]
  31. Sci Rep. 2019 May 9;9(1):7127 [PMID: 31073206]
  32. Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4182-7 [PMID: 21368107]
  33. Front Neurosci. 2020 Sep 16;14:571095 [PMID: 33041763]
  34. Neural Comput. 2019 Sep;31(9):1891-1914 [PMID: 31335290]
  35. Trends Cogn Sci. 1999 Apr;3(4):128-135 [PMID: 10322466]
  36. Neural Comput. 2005 Sep;17(9):1875-902 [PMID: 15992485]
  37. Behav Brain Res. 2015 Oct 1;292:157-66 [PMID: 26092714]
  38. Nat Commun. 2020 Mar 25;11(1):1554 [PMID: 32214100]
  39. Neuron. 2014 Feb 5;81(3):521-8 [PMID: 24507189]
  40. J Neurosci. 2010 Sep 8;30(36):12084-93 [PMID: 20826671]
  41. Nat Commun. 2018 May 29;9(1):2122 [PMID: 29844313]
  42. Neuron. 2018 Feb 7;97(3):640-655.e4 [PMID: 29395914]
  43. Neural Comput. 2017 Nov;29(11):2925-2954 [PMID: 28777718]
  44. Atten Percept Psychophys. 2015 Jul;77(5):1465-87 [PMID: 25828463]

Word Cloud

Created with Highcharts 10.0.0soundssourcecansegregationacousticsoundsourcesmixturesblindyetmodelsettingsnaturalauditorytemporaldifferentidentifypatternsrepetitionexploredseparationsomatodendriticneuronlearningspatio-temporalcapabilitieshumanexperimentalpropertiesenvironmentssignalsoriginatesuperimpositionprobleminferringindividualambiguousknowndecompositionExperimentshumansdemonstratedsystemrepeatingembeddedinputSourceproducesregularitiesdetectedusedSpecificallylistenersoccurringacrossheardsinglemixtureHoweverwhetherbehaviorcomputationallymodeledproposebiologicallyinspiredcomputationalperformsequencesstimulimethodreliestrainedHebbian-likeruleoriginallyconceiveddetectrecurringsynapticinputsshowreminiscentfeaturesperformancevarietyinvolvingsynthesizednaturalisticFurthermoreextendstudyinvestigatetasksubjectsnamelyimagesOverallworksuggestsmodelsofferpromisingneuro-inspiredstrategyaccountcharacteristicsbrainwellmakepredictionsuntestedModelingRepetition-BasedRecoveringAcousticVisualSourcesDendriticNeuronsdendriticneuronsstructurespikingneuralnetworks

Similar Articles

Cited By