A global synthesis of human impacts on the multifunctionality of streams and rivers.

Mario Brauns, Daniel C Allen, Iola G Boëchat, Wyatt F Cross, Verónica Ferreira, Daniel Graeber, Christopher J Patrick, Marc Peipoch, Daniel von Schiller, Björn Gücker
Author Information
  1. Mario Brauns: Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Magdeburg, Germany. ORCID
  2. Daniel C Allen: Department of Ecosystem Science and Management, Pennsylvania State University, State College, Pennsylvania, USA. ORCID
  3. Iola G Boëchat: Department of Geosciences, Federal University of São João del-Rei, São João del-Rei, Brazil. ORCID
  4. Wyatt F Cross: Department of Ecology, Montana State University, Bozeman, Montana, USA. ORCID
  5. Verónica Ferreira: Department of Life Sciences, MARE-Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal. ORCID
  6. Daniel Graeber: Department of Aquatic Ecosystem Analysis, Helmholtz Centre for Environmental Research-UFZ, Magdeburg, Germany. ORCID
  7. Christopher J Patrick: Department of Biological Sciences, Virginia Institute of Marine Science, Gloucester Point, Virginia, USA. ORCID
  8. Marc Peipoch: Ecosystem Ecology Group, Stroud Water Research Center, Avondale, Pennsylvania, USA. ORCID
  9. Daniel von Schiller: Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Universitat de Barcelona (UB), Barcelona, Spain. ORCID
  10. Björn Gücker: Department of Geosciences, Federal University of São João del-Rei, São João del-Rei, Brazil. ORCID

Abstract

Human impacts, particularly nutrient pollution and land-use change, have caused significant declines in the quality and quantity of freshwater resources. Most global assessments have concentrated on species diversity and composition, but effects on the multifunctionality of streams and rivers remain unclear. Here, we analyse the most comprehensive compilation of stream ecosystem functions to date to provide an overview of the responses of nutrient uptake, leaf litter decomposition, ecosystem productivity, and food web complexity to six globally pervasive human stressors. We show that human stressors inhibited ecosystem functioning for most stressor-function pairs. Nitrate uptake efficiency was most affected and was inhibited by 347% due to agriculture. However, concomitant negative and positive effects were common even within a given stressor-function pair. Some part of this variability in effect direction could be explained by the structural heterogeneity of the landscape and latitudinal position of the streams. Ranking human stressors by their absolute effects on ecosystem multifunctionality revealed significant effects for all studied stressors, with wastewater effluents (194%), agriculture (148%), and urban land use (137%) having the strongest effects. Our results demonstrate that we are at risk of losing the functional backbone of streams and rivers if human stressors persist in contemporary intensity, and that freshwaters are losing critical ecosystem services that humans rely on. We advocate for more studies on the effects of multiple stressors on ecosystem multifunctionality to improve the functional understanding of human impacts. Finally, freshwater management must shift its focus toward an ecological function-based approach and needs to develop strategies for maintaining or restoring ecosystem functioning of streams and rivers.

Keywords

References

  1. Abell, R., Thieme, M. L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., Coad, B., Mandrak, N., Contreras Balderas, S., Bussing, W., Stiassny, M. J. L., Skelton, P., Allen, G. R., Unmack, P., Naseka, A., Ng, R., Sindorf, N., Robertson, J., Armijo, E., … Petry, P. (2008). Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation. BioScience, 58(5), 403-414. https://doi.org/10.1641/B580507
  2. Albert, J. S., Destouni, G., Duke-Sylvester, S. M., Magurran, A. E., Oberdorff, T., Reis, R. E., Winemiller, K. O., & Ripple, W. J. (2021). Scientists' warning to humanity on the freshwater biodiversity crisis. Ambio, 50(1), 85-94. https://doi.org/10.1007/s13280-020-01318-8
  3. Ardón, M., Zeglin, L. H., Utz, R. M., Cooper, S. D., Dodds, W. K., Bixby, R. J., Follstad Shah, J., Griffiths, N. A., Harms, T. K., Johnson, S. L., Jones, J. B., Kominoski, J. S., McDowell, W. H., Rosemond, A. D., Trentman, M. T., Van Horn, D., & Ward, A. (2021). Experimental nitrogen and phosphorus enrichment stimulates multiple trophic levels of algal and detrital-based food webs: A global meta-analysis from streams and rivers. Biological Reviews, 96(2), 692-715. https://doi.org/10.1111/brv.12673
  4. Bernhardt, E. S., Heffernan, J. B., Grimm, N. B., Stanley, E. H., Harvey, J. W., Arroita, M., Appling, A. P., Cohen, M. J., McDowell, W. H., Hall, Jr., R. O., Read, J. S., Roberts, B. J., Stets, E. G., & Yackulic, C. B. (2018). The metabolic regimes of flowing waters. Limnology and Oceanography, 63(Suppl. 1), S99-S118. https://doi.org/10.1002/lno.10726
  5. Bernot, M., Sobota, D., Hall Jr., R. O., Mullholland, P. J., Dodds, W. K., Webster, J. R., Tank, J. L., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., Gregory, S. W., Grimm, N. B., Hamilton, S. K., Johnson, S. L., McDowell, W. H., Meyer, J. L., Peterson, B., Poole, G. C., Valett, H. M., … Wilson, K. (2010). Inter-regional comparison of land-use effects on stream metabolism. Freshwater Biology, 55(9), 1874-1890. https://doi.org/10.1111/j.1365-2427.2010.02422.x
  6. Beusen, A. H. W., Bouwman, A. F., Van Beek, L. P. H., Mogollón, J. M., & Middelburg, J. J. (2016). Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences, 13(8), 2441-2451. https://doi.org/10.5194/bg-13-2441-2016
  7. Brauns, M., Allen, D. C., Boëchat, I. G., Cross, W. F., Ferreira, V., Graeber, D., Patrick, C. J., Peipoch, M., von Schiller, D., Gücker, B. (2022): Dataset: A global synthesis of human impacts on the multifunctionality of streams and rivers [Dataset]. Dryad, Dataset. https://doi.org/10.5061/dryad.8pk0p2nqh
  8. Birgand, F., Skaggs, R. W., Chescheir, G. M., & Gilliam, J. W. (2007). nitrogen removal in streams of agricultural catchments-A literature review. Critical Reviews in Environmental Science and Technology, 37(5), 381-487. https://doi.org/10.1080/10643380600966426
  9. Calcagno, V. (2020). Package ‘glmulti’. https://cran.r-project.org/package=glmulti
  10. Chappell, K. R., & Goulder, R. (1994). Enzymes as river pollutants and the response of native epilithic extracellular-enzyme activity. Environmental Pollution, 86(2), 161-169. https://doi.org/10.1016/0269-7491(94)90187-2
  11. de Vries, W., Kros, J., Kroeze, C., & Seitzinger, S. P. (2013). Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Current Opinion in Environmental Sustainability, 5(3), 392-402. https://doi.org/10.1016/j.cosust.2013.07.004
  12. Dodds, W. K., Bruckerhoff, L., Batzer, D., Schechner, A., Pennock, C., Renner, E., Tromboni, F., Bigham, K., & Grieger, S. (2019). The freshwater biome gradient framework: Predicting macroscale properties based on latitude, altitude, and precipitation. Ecosphere, 10(7), e02786. https://doi.org/10.1002/ecs2.2786
  13. Dodds, W. K., Clements, W. H., Gido, K., Hilderbrand, R. H., & King, R. S. (2010). Thresholds, breakpoints, and nonlinearity in freshwaters as related to management. Journal of the North American Benthological Society, 29(3), 988-997. https://doi.org/10.1899/09-148.1
  14. Dudgeon, D. (2010). Prospects for sustaining freshwater biodiversity in the 21st century: Linking ecosystem structure and function. Current Opinion in Environmental Sustainability, 2(5-6), 422-430. https://doi.org/10.1016/j.cosust.2010.09.001
  15. Ferreira, V., & Chauvet, E. (2011). Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Global Change Biology, 17(1), 551-564. https://doi.org/10.1111/j.1365-2486.2010.02185.x
  16. Ferreira, V., Elosegi, A., Tiegs, S. D., von Schiller, D., & Young, R. (2020). Organic matter decomposition and ecosystem metabolism as tools to assess the functional integrity of streams and rivers-A systematic review. Water, 12(12), 3523. https://doi.org/10.3390/w12123523
  17. Ferreira, V., Koricheva, J., Duarte, S., Niyogi, D. K., & Guérold, F. (2016). Effects of anthropogenic heavy metal contamination on litter decomposition in streams-A meta-analysis. Environmental Pollution, 210, 261-270. https://doi.org/10.1016/j.envpol.2015.12.060
  18. Ferreira, V., Koricheva, J., Pozo, J., & Graça, M. A. S. (2016). A meta-analysis on the effects of changes in the composition of native forests on litter decomposition in streams. Forest Ecology and Management, 364, 27-38. https://doi.org/10.1016/j.foreco.2016.01.002
  19. Freixa, A., Ejarque, E., Crognale, S., Amalfitano, S., Fazi, S., Butturini, A., & Romaní, A. M. (2016). Sediment microbial communities rely on different dissolved organic matter sources along a Mediterranean river continuum. Limnology and Oceanography, 61(4), 1389-1405. https://doi.org/10.1002/lno.10308
  20. Gessner, M. O., & Chauvet, E. (2002). A case for using litter breakdown to assess functional stream integrity. Ecological Applications, 12(2), 498-510. https://doi.org/10.1890/1051-0761(2002)012[0498:ACFULB]2.0.CO;2
  21. Giling, D. P., Beaumelle, L., Phillips, H. R. P., Cesarz, S., Eisenhauer, N., Ferlian, O., Gottschall, F., Guerra, C., Hines, J., Sendek, A., Siebert, J., Thakur, M. P., & Barnes, A. D. (2019). A niche for ecosystem multifunctionality in global change research. Global Change Biology, 25(3), 763-774. https://doi.org/10.1111/gcb.14528
  22. Graeber, D., Boëchat, I. G., Encina-Montoya, F., Esse, C., Gelbrecht, J., Goyenola, G., Gücker, B., Heinz, M., Kronvang, B., Meerhoff, M., Nimptsch, J., Pusch, M. T., Silva, R. C. S., von Schiller, D., & Zwirnmann, E. (2015). Global effects of agriculture on fluvial dissolved organic matter. Scientific Reports, 5, 16328. https://doi.org/10.1038/srep16328
  23. Graeber, D., Gücker, B., Wild, R., Wells, N. S., Anlanger, C., Kamjunke, N., Norf, H., Schmidt, C., & Brauns, M. (2019). Biofilm-specific uptake does not explain differences in whole-stream DOC tracer uptake between a forest and an agricultural stream. Biogeochemistry, 6, 85-101. https://doi.org/10.1007/s10533-019-00573-6
  24. Grant, S. B., Azizian, M., Cook, P., Boano, F., & Rippy, M. A. (2018). Factoring stream turbulence into global assessments of nitrogen pollution. Science, 359(6381), 1266-1269. https://doi.org/10.1126/science.aap8074
  25. Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., Babu, S., Borrelli, P., Cheng, L., Crochetiere, H., Ehalt Macedo, H., Filgueiras, R., Goichot, M., Higgins, J., Hogan, Z., Lip, B., McClain, M. E., Meng, J., Mulligan, M., & Zarfl, C. (2019). Mapping the world's free-flowing rivers. Nature, 569(7755), 215-221. https://doi.org/10.1038/s41586-019-1111-9
  26. Groffman, P. M., Baron, J. S., Blett, T., Gold, A. J., Goodman, I., Gunderson, L. H., Levinson, B. M., Palmer, M. A., Paerl, H. W., Peterson, G. D., Poff, N. L., Rejeski, D. W., Reynolds, J. F., Turner, M. G., Weathers, K. C., & Wiens, J. (2012). Ecological thresholds: The key to successful environmental management or an important concept with no practical application? Ecosystems, 9(1), 1-13. https://doi.org/10.1007/s10021-003-0142-z
  27. Gücker, B., Brauns, M., & Pusch, M. T. (2006). Effects of wastewater treatment plant discharge on ecosystem structure and function of lowland streams. Journal of the North American Benthological Society, 25(2), 313-329. https://doi.org/10.1899/0887-3593(2006)25[313:EOWTPD]2.0.CO;2
  28. Hedges, L. V., Gurevitch, J., & Curtis, P. S. (1999). The meta-analysis of response ratios in experimental ecology. Ecology, 80(4), 1150-1156. https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
  29. Hering, D., Johnson, R. K., Kramm, S., Schmutz, S., Szoszkiewicz, K., & Verdonschot, P. F. M. (2006). Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: A comparative metric-based analysis of organism response to stress. Freshwater Biology, 51(9), 1757-1785. https://doi.org/10.1111/j.1365-2427.2006.01610.x
  30. Hillebrand, H., Donohue, I., Harpole, W. S., Hodapp, D., Kucera, M., Lewandowska, A. M., Merder, J., Montoya, J. M., & Freund, J. A. (2020). Thresholds for ecological responses to global change do not emerge from empirical data. Nature Ecology & Evolution, 4(11), 1502-1509. https://doi.org/10.1038/s41559-020-1256-9
  31. Hothorn, T., Bretz, F., & Westfall, P. (2017). Simultaneous inference in general parametric models. Biometrical Journal, 50, 346-363. https://doi.org/10.1002/bimj.200810425
  32. Jackson, M. C., Loewen, C. J. G., Vinebrooke, R. D., & Chimimba, C. T. (2016). Net effects of multiple stressors in freshwater ecosystems: A meta-analysis. Global Change Biology, 22(1), 180-189. https://doi.org/10.1111/gcb.13028
  33. Jankowski, K. J., Mejia, F. H., Blaszczak, J. R., & Holtgrieve, G. W. (2021). Aquatic ecosystem metabolism as a tool in environmental management. WIREs Water, 8(4), e1521. https://doi.org/10.1002/wat2.1521
  34. Jax, K. (2005). Function and “functioning” in ecology: What does it mean? Oikos, 111(3), 641-648. https://doi.org/10.1111/j.1600-0706.2005.13851.x
  35. Lajeunesse, M. J. (2013). Recovering missing or partial data from studies: A survey of conversions and imputations for meta-analysis. In K. Julia, G. Jessica, & M. Kerrie (Eds.), Handbook of meta-analysis in ecology and evolution (pp. 195-206). Princeton University Press.
  36. Lenat, D. R. (1988). Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. Journal of the North American Benthological Society, 7(3), 222-233. https://doi.org/10.2307/1467422
  37. Malhi, Y. (2017). The concept of the anthropocene. Annual Review of Environment and Resources, 42(1), 77-104. https://doi.org/10.1146/annurev-environ-102016-060854
  38. Manning, P., van der Plas, F., Soliveres, S., Allan, E., Maestre, F. T., Mace, G., Whittingham, M. J., & Fischer, M. (2018). Redefining ecosystem multifunctionality. Nature Ecology & Evolution, 2(3), 427-436. https://doi.org/10.1038/s41559-017-0461-7
  39. Mulholland, P. J., Helton, A. M., Poole, G. C., Hall, R. O., Hamilton, S. K., Peterson, B. J., Tank, J. L., Ashkenas, L. R., Cooper, L. W., Dahm, C. N., Dodds, W. K., Findlay, S. E. G., Gregory, S. W., Grimm, N. B., Johnson, S. L., McDowell, W. H., Meyer, J. L., Valett, H. M., Webster, J. R., & Thomas, S. M. (2008). Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature, 452(7184), 202-205. https://doi.org/10.1038/nature06686
  40. Murphy, G. E. P., & Romanuk, T. N. (2014). A meta-analysis of declines in local species richness from human disturbances. Ecology and Evolution, 4(1), 91-103. https://doi.org/10.1002/ece3.909
  41. Nakagawa, S., Lagisz, M., Jennions, M. D., Koricheva, J., Noble, D. W. A., Parker, T. H., Sánchez-Tójar, A., Yang, Y., & O'Dea, R. E. (2022). Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods in Ecology and Evolution, 13(1), 4-21. https://doi.org/10.1111/2041-210X.13724
  42. Paerl, H. W., & Scott, J. T. (2010). Throwing fuel on the fire: Synergistic effects of excessive nitrogen inputs and global warming on harmful algal blooms. Environmental Science & Technology, 44(20), 7756-7758. https://doi.org/10.1021/es102665e
  43. Palmer, M. A., & Febria, C. M. (2012). The heartbeat of ecosystems. Science, 336(6087), 1393-1394. https://doi.org/10.1126/science.1223250
  44. Palmer, M. A., & Ruhi, A. (2019). Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration. Science, 365, 1-13. https://doi.org/10.1126/science.aaw2087
  45. Patrick, C. J., McGarvey, D. J., Larson, J. H., Cross, W. F., Allen, D. C., Benke, A. C., Brey, T., Huryn, A. D., Jones, J., Murphy, C. A., Ruffing, C., Saffarinia, P., Whiles, M. R., Wallace, J. B., & Woodward, G. (2019). Precipitation and temperature drive continental-scale patterns in stream invertebrate production. Science Advances, 5(4). https://doi.org/10.1126/sciadv.aav2348
  46. Pereda, O., von Schiller, D., García-Baquero, G., Mor, J.-R., Acuña, V., Sabater, S., & Elosegi, A. (2021). Combined effects of urban pollution and hydrological stress on ecosystem functions of Mediterranean streams. Science of the Total Environment, 753, 141971. https://doi.org/10.1016/j.scitotenv.2020.141971
  47. Piggott, J. J., Niyogi, D. K., Townsend, C. R., & Matthaei, C. D. (2015). Multiple stressors and stream ecosystem functioning: Climate warming and agricultural stressors interact to affect processing of organic matter. Journal of Applied Ecology, 52(5), 1126-1134. https://doi.org/10.1111/1365-2664.12480
  48. R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
  49. Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W., Tockner, K., Vermaire, J. C., Dudgeon, D., & Cooke, S. J. (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94(3), 849-873. https://doi.org/10.1111/brv.12480
  50. Rosenberg, M. S. (2005). The file-drawer problem revisited: A general weighted method for calculating fail-safe numbers in meta-analysis. Evolution, 59(2), 464-468. https://doi.org/10.1554/04-602
  51. Sabater, S., Bregoli, F., Acuña, V., Barceló, D., Elosegi, A., Ginebreda, A., Marcé, R., Muñoz, I., Sabater-Liesa, L., & Ferreira, V. (2018). Effects of human-driven water stress on river ecosystems: A meta-analysis. Scientific Reports, 8(1), 11462. https://doi.org/10.1038/s41598-018-29807-7
  52. Sabater, S., Elosegi, A., & Ludwig, R. (2019). Summary, implications and recommendations for the occurrence and effects of multiple stressors in river ecosystems. In S. Sabater, A. Elosegi, & R. Ludwig (Eds.), Multiple stressors in river ecosystems (pp. 375-380). Elsevier.
  53. Schäfer, R. B., von der Ohe, P. C., Rasmussen, J., Kefford, B. J., Beketov, M. A., Schulz, R., & Liess, M. (2012). Thresholds for the effects of pesticides on invertebrate communities and leaf breakdown in stream ecosystems. Environmental Science & Technology, 46(9), 5134-5142. https://doi.org/10.1021/es2039882
  54. Scholes, R. J., & Biggs, R. (2005). A biodiversity intactness index. Nature, 434(7029), 45-49. https://doi.org/10.1038/nature03289
  55. Simmons, B. I., Blyth, P. S. A., Blanchard, J. L., Clegg, T., Delmas, E., Garnier, A., Griffiths, C. A., Jacob, U., Pennekamp, F., Petchey, O. L., Poisot, T., Webb, T. J., & Beckerman, A. P. (2021). Refocusing multiple stressor research around the targets and scales of ecological impacts. Nature Ecology & Evolution., 5, 1478-1489. https://doi.org/10.1038/s41559-021-01547-4
  56. Steffen, W., Crutzen, P. J., & McNeill, J. R. (2007). The Anthropocene: Are humans now overwhelming the great forces of nature? Ambio, 36(8), 614-621.
  57. Su, G., Logez, M., Xu, J., Tao, S., Villeger, S., & Brosse, S. (2021). Human impacts on global freshwater fish biodiversity. Science, 371, 835-838. https://doi.org/10.1126/science.abd3369
  58. Sundar, S., Heino, J., Roque, F. D. O., Simaika, J. P., Melo, A. S., Tonkin, J. D., Davidson, D. G., & Silva, D. P. (2020). Conservation of freshwater macroinvertebrate biodiversity in tropical regions. Aquatic Conservation: Marine and Freshwater Ecosystems, 30(6), 1238-1250. https://doi.org/10.1002/aqc.3326
  59. Tiegs, S. D., Costello, D. M., Isken, M. W., Woodward, G., McIntyre, P. B., Gessner, M. O., Chauvet, E., Griffiths, N. A., Flecker, A. S., Acuña, V., Albariño, R., Allen, D. C., Alonso, C., Andino, P., Arango, C., Aroviita, J., Borbosa, M. V. M., Barmuta, L. A., Baxter, C. V., & Zwart, J. A. (2019). Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances, 5(1), eaav0486. https://doi.org/10.1126/sciadv.aav0486
  60. Underwood, A. J. (1989). The analysis of stress in natural populations. Biological Journal of the Linnean Society, 37(1-2), 51-78. https://doi.org/10.1111/j.1095-8312.1989.tb02005.x
  61. Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 1, 1-48. https://doi.org/10.18637/jss.v036.i03
  62. Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H., & Tilman, D. G. (1997). Human alteration of the global nitrogen cycle: Source and consequences. Ecological Applications, 7(3), 737-750. https://doi.org/10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
  63. Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Reidy Liermann, C., & Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467, 555-561. https://doi.org/10.1038/nature09440
  64. Weitere, M., Altenburger, R., Anlanger, C., Baborowski, M., Bärlund, I., Beckers, L.-M., Borchardt, D., Brack, W., Brase, L., Busch, W., Chatzinotas, A., Deutschmann, B., Eligehausen, J., Frank, K., Graeber, D., Griebler, C., Hagemann, J., Herzsprung, P., Hollert, H., & Brauns, M. (2021). Disentangling multiple chemical and non-chemical stressors in a lotic ecosystem using a longitudinal approach. Science of the Total Environment, 769, 144324. https://doi.org/10.1016/j.scitotenv.2020.144324
  65. Wijngaarden, R. P. A. V., Brock, T. C. M., & Brink, P. J. V. D. (2005). Threshold levels for effects of insecticides in freshwater ecosystems: A review. Ecotoxicology, 14(3), 355-380. https://doi.org/10.1007/s10646-004-6371-x
  66. Woodward, G., Gessner, M. O., Giller, P. S., Gulis, V., Hladyz, S., Lecerf, A., Malmqvist, B., McKie, B. G., Tiegs, S. D., Cariss, H., Dobson, M., Elosegi, A., Ferreira, V., Graça, M. A. S., Fleituch, T., Lacoursière, J. O., Nistorescu, M., Pozo, J., Risnoveanu, G., & Chauvet, E. (2012). Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science, 336(6087), 1438-1440. https://doi.org/10.1126/science.1219534
  67. Xenopoulos, M. A., Barnes, R. T., Boodoo, K. S., Butman, D., Catalán, N., D'Amario, S. C., Fasching, C., Kothawala, D. N., Pisani, O., Solomon, C. T., Spencer, R. G. M., Williams, C. T., & Wilson, H. F. (2021). How humans alter dissolved organic matter composition in freshwater: Relevance for the Earth's biogeochemistry. Biogeochemistry, 154(2), 323-348. https://doi.org/10.1007/s10533-021-00753-3
  68. Young, R. G., Matthaei, C. D., & Townsend, C. R. (2008). Organic matter breakdown and ecosystem metabolism: Functional indicators for assessing river ecosystem health. Journal of the North American Benthological Society, 27(3), 605-625. https://doi.org/10.1899/07-121.1
  69. Zhao, S., Peng, C., Jiang, H., Tian, D., Lei, X., & Zhou, X. (2006). Land use change in Asia and the ecological consequences. Ecological Research, 21(6), 890-896. https://doi.org/10.1007/s11284-006-0048-2

MeSH Term

Agriculture
Anthropogenic Effects
Ecosystem
Food Chain
Humans
Rivers

Word Cloud

Created with Highcharts 10.0.0ecosystemstressorseffectshumanstreamsmultifunctionalityriversimpactsnutrientuptakesignificantfreshwatergloballeaflitterdecompositionfoodinhibitedfunctioningstressor-functionagriculturelosingfunctionalmultipleHumanparticularlypollutionland-usechangecauseddeclinesqualityquantityresourcesassessmentsconcentratedspeciesdiversitycompositionremainunclearanalysecomprehensivecompilationstreamfunctionsdateprovideoverviewresponsesproductivitywebcomplexitysixgloballypervasiveshowpairsNitrateefficiencyaffected347%dueHoweverconcomitantnegativepositivecommonevenwithingivenpairpartvariabilityeffectdirectionexplainedstructuralheterogeneitylandscapelatitudinalpositionRankingabsoluterevealedstudiedwastewatereffluents194%148%urbanlanduse137%strongestresultsdemonstrateriskbackbonepersistcontemporaryintensityfreshwaterscriticalserviceshumansrelyadvocatestudiesimproveunderstandingFinallymanagementmustshiftfocustowardecologicalfunction-basedapproachneedsdevelopstrategiesmaintainingrestoringsynthesiswebsmeta-analysissecondaryproductionwhole-streammetabolism

Similar Articles

Cited By