Machine Learning in Causal Inference: Application in Pharmacovigilance.

Yiqing Zhao, Yue Yu, Hanyin Wang, Yikuan Li, Yu Deng, Guoqian Jiang, Yuan Luo
Author Information
  1. Yiqing Zhao: Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 750 N Lake Shore Drive, Room 11-189, Chicago, IL, 60611, USA.
  2. Yue Yu: Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, 55902, USA.
  3. Hanyin Wang: Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 750 N Lake Shore Drive, Room 11-189, Chicago, IL, 60611, USA.
  4. Yikuan Li: Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 750 N Lake Shore Drive, Room 11-189, Chicago, IL, 60611, USA.
  5. Yu Deng: Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 750 N Lake Shore Drive, Room 11-189, Chicago, IL, 60611, USA.
  6. Guoqian Jiang: Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, 55902, USA.
  7. Yuan Luo: Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 750 N Lake Shore Drive, Room 11-189, Chicago, IL, 60611, USA. yuan.luo@northwestern.edu. ORCID

Abstract

Monitoring adverse drug events or pharmacovigilance has been promoted by the World Health Organization to assure the safety of medicines through a timely and reliable information exchange regarding drug safety issues. We aim to discuss the application of machine learning methods as well as causal inference paradigms in pharmacovigilance. We first reviewed data sources for pharmacovigilance. Then, we examined traditional causal inference paradigms, their applications in pharmacovigilance, and how machine learning methods and causal inference paradigms were integrated to enhance the performance of traditional causal inference paradigms. Finally, we summarized issues with currently mainstream correlation-based machine learning models and how the machine learning community has tried to address these issues by incorporating causal inference paradigms. Our literature search revealed that most existing data sources and tasks for pharmacovigilance were not designed for causal inference. Additionally, pharmacovigilance was lagging in adopting machine learning-causal inference integrated models. We highlight several currently trending directions or gaps to integrate causal inference with machine learning in pharmacovigilance research. Finally, our literature search revealed that the adoption of causal paradigms can mitigate known issues with machine learning models. We foresee that the pharmacovigilance domain can benefit from the progress in the machine learning field.

References

  1. BMC Med Inform Decis Mak. 2019 Jan 10;19(1):7 [PMID: 30630486]
  2. J Am Med Inform Assoc. 2018 Oct 1;25(10):1339-1350 [PMID: 30010902]
  3. Drug Saf. 2010 Feb 1;33(2):139-46 [PMID: 20082540]
  4. Epidemiology. 2006 May;17(3):268-75 [PMID: 16617275]
  5. AMIA Annu Symp Proc. 2014 Nov 14;2014:606-15 [PMID: 25954366]
  6. Proc AAAI Conf Artif Intell. 2012 Jul;2012:790-793 [PMID: 24955289]
  7. Brief Bioinform. 2017 Jan;18(1):160-178 [PMID: 26851224]
  8. J Am Med Inform Assoc. 2018 Oct 1;25(10):1274-1283 [PMID: 30272184]
  9. Drug Saf. 2018 Nov;41(11):1073-1085 [PMID: 29876835]
  10. J Am Med Inform Assoc. 2020 Jan 1;27(1):119-126 [PMID: 31722396]
  11. Multivariate Behav Res. 2011 May 31;46(3):514-43 [PMID: 26735885]
  12. Ann Emerg Med. 2010 Jun;55(6):513-21 [PMID: 20005011]
  13. Pharmacoepidemiol Drug Saf. 2013 May;22(5):517-23 [PMID: 23512870]
  14. Stat Med. 2007 Jan 15;26(1):20-36 [PMID: 17072897]
  15. Drug Saf. 2018 Jun;41(6):579-590 [PMID: 29446035]
  16. Stat Med. 2012 Dec 30;31(30):4401-15 [PMID: 23015364]
  17. Drug Saf. 2018 Jun;41(6):565-577 [PMID: 29468602]
  18. J Biomed Inform. 2017 Aug;72:85-95 [PMID: 28694119]
  19. Cardiooncology. 2021 Jun 28;7(1):25 [PMID: 34183072]
  20. Drug Saf. 2016 Dec;39(12):1229-1237 [PMID: 27677637]
  21. Br J Clin Pharmacol. 1988 Jul;26(1):1-5 [PMID: 3203052]
  22. AMIA Annu Symp Proc. 2021 Jan 25;2020:1041-1049 [PMID: 33936480]
  23. Front Pharmacol. 2018 Sep 18;9:1010 [PMID: 30279658]
  24. Pharmacoepidemiol Drug Saf. 2008 Jun;17(6):546-55 [PMID: 18311848]
  25. J Biomed Inform. 2018 Oct;86:15-24 [PMID: 30142385]
  26. J Causal Inference. 2015 Mar 1;3(1):25-40 [PMID: 26877909]
  27. Drug Saf. 2010 Jun 1;33(6):475-87 [PMID: 20486730]
  28. Front Artif Intell. 2021 May 26;4:659622 [PMID: 34136800]
  29. Drug Discov Today. 2019 Jul;24(7):1332-1343 [PMID: 30876845]
  30. Eur J Clin Pharmacol. 2015 Sep;71(9):1147-53 [PMID: 26174115]
  31. Epidemiology. 1990 Nov;1(6):421-9 [PMID: 2090279]
  32. Drug Discov Today. 2016 Mar;21(3):400-5 [PMID: 26694021]
  33. Ann Intern Med. 2019 Feb 5;170(3):201-202 [PMID: 30597488]
  34. Chest. 2020 Jul;158(1S):S21-S28 [PMID: 32658648]
  35. Drug Saf. 2020 Mar;43(3):295-296 [PMID: 31834590]
  36. Clin Pharmacol Ther. 2011 Feb;89(2):243-50 [PMID: 21191383]
  37. Drug Saf. 2016 Jan;39(1):45-57 [PMID: 26446143]
  38. J Am Med Inform Assoc. 2012 Jun;19(e1):e28-35 [PMID: 22718037]
  39. BMC Bioinformatics. 2011 May 18;12:169 [PMID: 21586169]
  40. Am J Clin Pathol. 2016 Jun;145(6):778-88 [PMID: 27329638]
  41. AMIA Annu Symp Proc. 2011;2011:1019-26 [PMID: 22195162]
  42. J Invasive Cardiol. 2019 Jan;31(1):21-26 [PMID: 30611123]
  43. Drug Saf. 2015 Aug;38(8):749-65 [PMID: 26055920]
  44. J Biomed Inform. 2014 Jun;49:134-47 [PMID: 24448204]
  45. Drug Saf. 2017 Nov;40(11):1075-1089 [PMID: 28643174]
  46. Int J Epidemiol. 2022 Oct 13;51(5):1622-1636 [PMID: 35526156]
  47. Artif Intell Med. 2020 Sep;109:101942 [PMID: 34756221]
  48. Ther Adv Drug Saf. 2019 Aug 05;10:2042098619864744 [PMID: 31428307]
  49. Am J Epidemiol. 2014 Sep 15;180(6):645-55 [PMID: 25143475]
  50. Drug Saf. 2017 Apr;40(4):317-331 [PMID: 28044249]
  51. IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):139-153 [PMID: 29994486]
  52. J Clin Pharm Ther. 2019 Apr;44(2):268-275 [PMID: 30565313]
  53. Arch Gerontol Geriatr. 2020 Mar - Apr;87:103842 [PMID: 31230795]
  54. Br J Clin Pharmacol. 2016 Jul;82(1):17-29 [PMID: 27016266]
  55. Nucleic Acids Res. 2015 Jan;43(Database issue):D470-8 [PMID: 25428363]
  56. Br J Anaesth. 2014 Jan;112(1):13-5 [PMID: 24318697]
  57. AMIA Jt Summits Transl Sci Proc. 2015 Mar 23;2015:69-73 [PMID: 26306241]
  58. Drug Saf. 2019 Jun;42(6):721-725 [PMID: 30725336]
  59. Drug Saf. 2019 Sep;42(9):1045-1053 [PMID: 31123940]
  60. Drug Saf. 2020 Jan;43(1):67-77 [PMID: 31646442]
  61. Drug Saf. 2006;29(5):385-96 [PMID: 16689555]
  62. J Am Med Inform Assoc. 2017 Sep 01;24(5):913-920 [PMID: 28371826]
  63. Health Serv Res. 2013 Aug;48(4):1487-507 [PMID: 23216471]
  64. Pharmacoepidemiol Drug Saf. 2012 Jan;21 Suppl 1:9-11 [PMID: 22262587]
  65. AMIA Annu Symp Proc. 2020 Mar 04;2019:755-764 [PMID: 32308871]
  66. J Am Soc Nephrol. 2009 May;20(5):1094-101 [PMID: 19357257]
  67. J Eval Clin Pract. 2017 Aug;23(4):703-712 [PMID: 28371206]
  68. BMC Bioinformatics. 2010 Oct 28;11 Suppl 9:S7 [PMID: 21044365]
  69. Clin Pharmacol Ther. 2012 Jun;91(6):1010-21 [PMID: 22549283]
  70. J Eval Clin Pract. 2018 Aug;24(4):740-744 [PMID: 29888469]
  71. Bioinformatics. 2012 Sep 15;28(18):i522-i528 [PMID: 22962476]
  72. J Am Med Inform Assoc. 2019 Mar 1;26(3):262-268 [PMID: 30590613]
  73. AMIA Annu Symp Proc. 2021 Jan 25;2020:442-451 [PMID: 33936417]
  74. Pharmacoepidemiol Drug Saf. 2012 Jul;21(7):697-709 [PMID: 22162077]
  75. Clin Pharmacol Ther. 2012 Aug;92(2):228-34 [PMID: 22713699]
  76. JAMA Netw Open. 2020 Oct 1;3(10):e2014645 [PMID: 33017028]
  77. BMC Bioinformatics. 2018 Dec 28;19(Suppl 21):476 [PMID: 30591036]
  78. J Am Med Inform Assoc. 2014 Mar-Apr;21(2):245-51 [PMID: 24334612]
  79. Artif Intell Med. 2020 Apr;104:101839 [PMID: 32499007]
  80. EBioMedicine. 2020 Jul;57:102837 [PMID: 32565027]
  81. Eur J Clin Pharmacol. 1998 Jun;54(4):315-21 [PMID: 9696956]
  82. Biostatistics. 2022 Jul 18;23(3):844-859 [PMID: 33616157]
  83. Ann Emerg Med. 2021 Apr;77(4):395-406 [PMID: 33455840]
  84. J R Soc Med. 2015 Jan;108(1):32-7 [PMID: 25572993]
  85. BMJ. 2004 Jul 3;329(7456):15-9 [PMID: 15231615]
  86. Multivariate Behav Res. 2011 May;46(3):399-424 [PMID: 21818162]
  87. Stat Med. 2015 Dec 10;34(28):3661-79 [PMID: 26238958]
  88. J Racial Ethn Health Disparities. 2015 Dec;2(4):527-36 [PMID: 26863559]
  89. Patterns (N Y). 2020 Oct 9;1(7): [PMID: 33179017]
  90. J Am Med Inform Assoc. 2017 Jul 01;24(4):813-821 [PMID: 28339747]
  91. KDD. 2019 Aug;2019:2547-2555 [PMID: 31799022]
  92. BMC Med Inform Decis Mak. 2015;15 Suppl 4:S1 [PMID: 26606038]
  93. Drug Saf. 2013 Oct;36 Suppl 1:S107-21 [PMID: 24166228]
  94. J Eval Clin Pract. 2016 Dec;22(6):871-881 [PMID: 27421786]
  95. Science. 2015 Feb 20;347(6224):1257601 [PMID: 25700523]
  96. Value Health. 2010 Jan-Feb;13(1):132-7 [PMID: 19695007]
  97. Expert Rev Anticancer Ther. 2020 Jul;20(7):615-623 [PMID: 32441582]
  98. J Am Med Inform Assoc. 2018 Jun 1;25(6):645-653 [PMID: 29202205]
  99. Psychother Res. 2021 Jan;31(1):78-91 [PMID: 32964809]
  100. Drug Saf. 2018 May;41(5):523-536 [PMID: 29327136]
  101. Bioinformatics. 2018 Jul 1;34(13):i457-i466 [PMID: 29949996]
  102. J Eval Clin Pract. 2016 Dec;22(6):856-863 [PMID: 27240883]
  103. Front Genet. 2021 Jan 12;11:625659 [PMID: 33584816]
  104. J Am Med Inform Assoc. 2018 Jan 1;25(1):93-98 [PMID: 29025149]
  105. BMC Med Inform Decis Mak. 2019 Apr 4;19(Suppl 3):78 [PMID: 30943974]
  106. Drug Saf. 2014 Oct;37(10):777-90 [PMID: 25151493]
  107. J Biomed Inform. 2021 May;117:103719 [PMID: 33716168]
  108. Psychol Methods. 2004 Dec;9(4):403-25 [PMID: 15598095]
  109. Drug Saf. 2019 Jun;42(6):727-741 [PMID: 30617498]
  110. Clin Pharmacol Ther. 2011 Aug;90(2):271-8 [PMID: 21677640]
  111. Int J Clin Pharm. 2018 Aug;40(4):903-910 [PMID: 30051231]
  112. Pharmacoepidemiol Drug Saf. 2009 Jun;18(6):427-36 [PMID: 19358225]
  113. Nucleic Acids Res. 2017 Jan 4;45(D1):D362-D368 [PMID: 27924014]
  114. Brief Bioinform. 2019 Jan 18;20(1):190-202 [PMID: 28968655]
  115. J Neurosurg. 2021 Jul 02;136(1):134-147 [PMID: 34214980]
  116. J Biomed Inform. 2015 Feb;53:196-207 [PMID: 25451103]
  117. Stat Med. 2010 Feb 10;29(3):337-46 [PMID: 19960510]
  118. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082 [PMID: 29126136]
  119. Proc Mach Learn Res. 2019 Apr;89:2445-2453 [PMID: 31198908]
  120. Bioinformatics. 2016 Nov 15;32(22):3444-3453 [PMID: 27466626]
  121. Comput Biol Med. 2021 Aug;135:104517 [PMID: 34130003]
  122. Epidemiology. 1996 Sep;7(5):478-84 [PMID: 8862977]
  123. Br J Clin Pharmacol. 1994 Nov;38(5):401-4 [PMID: 7893579]
  124. JMIR Ment Health. 2021 Apr 21;8(4):e24522 [PMID: 33688834]

Grants

  1. R01 LM013337/NLM NIH HHS
  2. U01 TR003528/NCATS NIH HHS

MeSH Term

Causality
Drug-Related Side Effects and Adverse Reactions
Humans
Machine Learning
Models, Theoretical
Pharmacovigilance

Word Cloud

Created with Highcharts 10.0.0pharmacovigilancemachinecausalinferencelearningparadigmsissuesmodelsdrugsafetymethodsdatasourcestraditionalintegratedFinallycurrentlyliteraturesearchrevealedcanMonitoringadverseeventspromotedWorldHealthOrganizationassuremedicinestimelyreliableinformationexchangeregardingaimdiscussapplicationwellfirstreviewedexaminedapplicationsenhanceperformancesummarizedmainstreamcorrelation-basedcommunitytriedaddressincorporatingexistingtasksdesignedAdditionallylaggingadoptinglearning-causalhighlightseveraltrendingdirectionsgapsintegrateresearchthe adoptionmitigateknownforeseedomainbenefitprogressfieldMachineLearningCausalInference:ApplicationPharmacovigilance

Similar Articles

Cited By (2)