Factors that Moderate the Effect of Nitrate Ingestion on Exercise Performance in Adults: A Systematic Review with Meta-Analyses and Meta-Regressions.

Kaio Vinicius C Silva, Breno Duarte Costa, Aline Corado Gomes, Bryan Saunders, João Felipe Mota
Author Information
  1. Kaio Vinicius C Silva: Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Goiás, Brazil.
  2. Breno Duarte Costa: Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculty of Medicine, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
  3. Aline Corado Gomes: Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Goiás, Brazil.
  4. Bryan Saunders: Applied Physiology and Nutrition Research Group, Rheumatology Division, Faculty of Medicine, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
  5. João Felipe Mota: Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Goiás, Brazil. ORCID

Abstract

To identify how variables such as exercise condition, supplementation strategy, participant characteristics and demographics, and practices that control oral microbiota diversity could modify the effect of inorganic nitrate ingestion (as nitrate salt supplements, beetroot juice, and nitrate-rich vegetables) on exercise performance, we conducted a systematic review with meta-analysis. Studies were identified in PubMed, Embase, and Cochrane databases. Eligibility criteria included randomized controlled trials assessing the effect of inorganic nitrate on exercise performance in healthy adults. To assess the variation in effect size, we used meta-regression models for continuous variables and subgroup analysis for categorical variables. A total of 123 studies were included in this meta-analysis, comprising 1705 participants. Nitrate was effective for improving exercise performance (standardized mean difference [SMD]: 0.101; 95% CI: 0.051, 0.151, P <0.001, I2 = 0%), although nitrate salts supplementation was not as effective (P = 0.629) as ingestion via beetroot juice (P <0.001) or a high-nitrate diet (P = 0.005). Practices that control oral microbiota diversity influenced the nitrate effect, with practices harmful to oral bacteria decreasing the ergogenic effect of nitrate. The ingestion of nitrate was most effective for exercise lasting between 2 and 10 min (P <0.001). An inverse dose-response relation between the fraction of inspired oxygen and the effect size (coefficient: -0.045, 95% CI: -0.085, -0.005, P = 0.028) suggests that nitrate was more effective in increasingly hypoxic conditions. There was a dose-response relation for acute administration (P = 0.049). The most effective acute dose was between 5 and 14.9 mmol provided ≥150 min prior to exercise (P <0.001). An inverse dose-response for protocols ≥2 d was observed (P = 0.025), with the optimal dose between 5 and 9.9 mmol·d-1 (P <0.001). Nitrate, via beetroot juice or a high-nitrate diet, improved exercise performance, in particular, in sessions lasting between 2 and 10 min. Ingestion of 5-14.9 mmol⋅d-1 taken ≥150 min prior to exercise appears optimal for performance gains and athletes should be aware that practices controlling oral microbiota diversity may decrease the effect of nitrate.

Keywords

References

  1. Int J Sports Physiol Perform. 2019 May 21;14(6):706-710 [PMID: 30427246]
  2. Int J Sports Physiol Perform. 2016 Sep;11(6):715-720 [PMID: 26641379]
  3. Am J Physiol Regul Integr Comp Physiol. 2007 Aug;293(2):R821-8 [PMID: 17459909]
  4. Res Sports Med. 2020 Jan-Mar;28(1):138-146 [PMID: 30849239]
  5. Appl Physiol Nutr Metab. 2017 Feb;42(2):166-172 [PMID: 28121183]
  6. Scand J Med Sci Sports. 2017 Dec;27(12):1616-1626 [PMID: 28165641]
  7. Integr Med Res. 2016 Sep;5(3):216-222 [PMID: 28462121]
  8. Appl Physiol Nutr Metab. 2018 Jul;43(7):697-703 [PMID: 29444414]
  9. Br J Sports Med. 2017 Apr;51(8):658-669 [PMID: 27797728]
  10. J Clin Invest. 1995 Jul;96(1):60-8 [PMID: 7542286]
  11. Med Sci Sports Exerc. 2020 Oct;52(10):2250-2261 [PMID: 32936597]
  12. J Appl Physiol (1985). 2017 Sep 1;123(3):637-644 [PMID: 28663382]
  13. Int J Sport Nutr Exerc Metab. 2020 May 29;30(4):295-300 [PMID: 32470923]
  14. J Int Soc Sports Nutr. 2016 Nov 3;13:39 [PMID: 27822169]
  15. Nutrients. 2017 Feb 20;9(2): [PMID: 28230742]
  16. J Hypertens. 2017 Jul;35(7):1353-1359 [PMID: 28319596]
  17. Nat Rev Drug Discov. 2008 Feb;7(2):156-67 [PMID: 18167491]
  18. Br J Sports Med. 1991 Dec;25(4):196-9 [PMID: 1839780]
  19. Int J Sport Nutr Exerc Metab. 2017 Aug;27(4):377-384 [PMID: 28182502]
  20. Acta Physiol (Oxf). 2007 Sep;191(1):59-66 [PMID: 17635415]
  21. J Acad Nutr Diet. 2012 Apr;112(4):548-52 [PMID: 22709704]
  22. Front Physiol. 2017 Jun 09;8:401 [PMID: 28649204]
  23. Nutrients. 2018 Sep 04;10(9): [PMID: 30181436]
  24. J Appl Physiol (1985). 2019 Jun 1;126(6):1701-1712 [PMID: 30844334]
  25. Int J Sport Nutr Exerc Metab. 2015 Jun;25(3):278-84 [PMID: 25202886]
  26. BMJ. 2021 Mar 29;372:n71 [PMID: 33782057]
  27. Behav Modif. 2017 Mar;41(2):323-339 [PMID: 27760807]
  28. BMJ. 2008 Apr 26;336(7650):924-6 [PMID: 18436948]
  29. Nutrients. 2019 Jul 18;11(7): [PMID: 31323779]
  30. Arch Biochem Biophys. 1991 Aug 15;289(1):130-6 [PMID: 1654842]
  31. Nutrients. 2016 Aug 31;8(9): [PMID: 27589795]
  32. Nitric Oxide. 2020 Jun 1;99:25-33 [PMID: 32272260]
  33. Nitric Oxide. 2016 Sep 30;59:63-70 [PMID: 27553127]
  34. Clin Exp Pharmacol Physiol. 2007 Dec;34(12):1291-3 [PMID: 17973870]
  35. Int J Sports Physiol Perform. 2014 Jul;9(4):615-20 [PMID: 24085341]
  36. J Appl Physiol (1985). 2013 Aug 1;115(3):325-36 [PMID: 23640589]
  37. Int J Sports Med. 2015 Dec;36(14):1177-85 [PMID: 26332900]
  38. J Am Coll Nutr. 2016;35(2):100-7 [PMID: 26885762]
  39. Eur J Nutr. 2017 Apr;56(3):1245-1254 [PMID: 26873098]
  40. Nitric Oxide. 2018 May 1;75:1-7 [PMID: 29378248]
  41. J Physiol. 2020 Jan;598(1):25-27 [PMID: 31724175]
  42. Nitric Oxide. 2015 Aug 1;48:10-5 [PMID: 25445632]
  43. J Am Nutr Assoc. 2022 Jan;41(1):30-37 [PMID: 33180007]
  44. Nitric Oxide. 2011 Jan 1;24(1):34-42 [PMID: 20951824]
  45. Appl Physiol Nutr Metab. 2014 Sep;39(9):1050-7 [PMID: 25154895]
  46. J Strength Cond Res. 2015 Jan;29(1):165-74 [PMID: 24978834]
  47. Pharmacol Rev. 2020 Jul;72(3):692-766 [PMID: 32576603]
  48. J Int Soc Sports Nutr. 2018 Oct 4;15(1):49 [PMID: 30286760]
  49. Free Radic Biol Med. 2010 Jan 15;48(2):342-7 [PMID: 19913611]
  50. J Am Coll Nutr. 2019 Nov-Dec;38(8):729-738 [PMID: 31084516]
  51. Sports Med. 2020 Oct;50(10):1813-1827 [PMID: 32661839]
  52. Annu Rev Nutr. 2013;33:129-59 [PMID: 23642194]
  53. Eur J Appl Physiol. 2015 Oct;115(10):2205-13 [PMID: 26077126]
  54. Int J Sport Nutr Exerc Metab. 2012 Feb;22(1):64-71 [PMID: 22248502]
  55. Res Synth Methods. 2010 Apr;1(2):97-111 [PMID: 26061376]
  56. Biomolecules. 2018 Nov 02;8(4): [PMID: 30400267]
  57. J Appl Physiol (1985). 2016 May 15;120(10):1151-8 [PMID: 26968028]
  58. Nitric Oxide. 2008 Dec;19(4):333-7 [PMID: 18793740]
  59. Int J Sports Physiol Perform. 2018 Nov 1;13(10):1317-1323 [PMID: 29745787]
  60. Nitric Oxide. 2021 Sep 1;113-114:13-22 [PMID: 33905826]
  61. Sports Med. 2001;31(10):725-41 [PMID: 11547894]
  62. Adv Nutr. 2017 Nov 15;8(6):830-838 [PMID: 29141968]
  63. Physiol Rep. 2019 Jan;7(2):e13982 [PMID: 30653856]
  64. Free Radic Biol Med. 2017 Apr;105:48-67 [PMID: 27989792]
  65. Sports Med. 2010 Mar 1;40(3):207-27 [PMID: 20199120]
  66. Eur J Appl Physiol. 2016 Feb;116(2):415-25 [PMID: 26614506]
  67. J Strength Cond Res. 2011 Dec;25(12):3461-71 [PMID: 22080324]
  68. Br J Nutr. 2018 Mar;119(6):636-657 [PMID: 29553034]
  69. J Nutr Metab. 2017;2017:7853034 [PMID: 28243471]
  70. Nature. 1994 Apr 7;368(6471):502 [PMID: 8139683]
  71. Med Sci Sports Exerc. 2021 Feb 1;53(2):280-294 [PMID: 32735111]
  72. Am J Physiol Regul Integr Comp Physiol. 2013 Dec 15;305(12):R1441-50 [PMID: 24089377]
  73. Appl Physiol Nutr Metab. 2016 Apr;41(4):421-9 [PMID: 26988767]
  74. Eur J Sport Sci. 2018 May;18(4):524-533 [PMID: 29412076]
  75. Nitric Oxide. 2017 Nov 1;70:1-8 [PMID: 28782598]
  76. Med Sci Sports Exerc. 2019 Mar;51(3):436-444 [PMID: 30299412]
  77. Br J Sports Med. 2021 Mar;55(5):243 [PMID: 32447320]
  78. Sci Rep. 2020 Mar 24;10(1):5254 [PMID: 32210245]
  79. Nitric Oxide. 2017 Sep 30;69:1-9 [PMID: 28684191]
  80. Eur J Oral Sci. 2005 Feb;113(1):14-9 [PMID: 15693824]
  81. Nitric Oxide. 2016 Feb 29;53:65-76 [PMID: 26772523]
  82. J Physiol. 2019 Dec;597(23):5565-5576 [PMID: 31350908]
  83. Front Physiol. 2017 Jul 06;8:451 [PMID: 28729839]
  84. Eur Heart J. 2012 Apr;33(7):829-37, 837a-837d [PMID: 21890489]
  85. Syst Rev. 2016 Dec 5;5(1):210 [PMID: 27919275]
  86. BMJ. 2011 Oct 18;343:d5928 [PMID: 22008217]
  87. Int J Sport Nutr Exerc Metab. 2017 Feb;27(1):11-17 [PMID: 27616745]
  88. Int J Exerc Sci. 2015 Jul 1;8(3):277-286 [PMID: 27182417]
  89. J Clin Invest. 1997 Jun 15;99(12):2818-25 [PMID: 9185502]
  90. J Strength Cond Res. 2018 Jun;32(6):1796-1808 [PMID: 29786633]
  91. Appl Physiol Nutr Metab. 2017 Nov;42(11):1185-1191 [PMID: 28719765]
  92. Curr Med Chem. 2016;23(24):2643-2652 [PMID: 27356532]
  93. Med Sci Sports Exerc. 2011 Jun;43(6):1125-31 [PMID: 21471821]
  94. Public Health Nutr. 2015 Oct;18(14):2669-78 [PMID: 25683748]
  95. Int J Exerc Sci. 2020 May 01;13(2):667-676 [PMID: 32509115]
  96. J Sci Med Sport. 2021 Jan;24(1):80-84 [PMID: 32507624]
  97. Appl Physiol Nutr Metab. 2019 Dec;44(12):1305-1310 [PMID: 31051087]
  98. J Appl Physiol (1985). 2018 Aug 1;125(2):254-262 [PMID: 29722627]
  99. Sports Med. 2017 Apr;47(4):735-756 [PMID: 27600147]
  100. Int J Sports Physiol Perform. 2014 Sep;9(5):845-50 [PMID: 24436354]
  101. J Clin Invest. 2004 Jan;113(1):106-14 [PMID: 14702114]
  102. Med Sci Sports Exerc. 2015 Aug;47(8):1643-51 [PMID: 25412295]
  103. Sports (Basel). 2017 Oct 16;5(4): [PMID: 29910440]
  104. J Appl Physiol (1985). 2018 May 1;124(5):1254-1263 [PMID: 29357494]
  105. BMJ. 2003 Sep 6;327(7414):557-60 [PMID: 12958120]

MeSH Term

Adult
Beta vulgaris
Dietary Supplements
Eating
Humans
Nitrates
Oxygen
Performance-Enhancing Substances
Salts

Chemicals

Nitrates
Performance-Enhancing Substances
Salts
Oxygen

Word Cloud

Created with Highcharts 10.0.0nitrateexerciseeffectoralperformanceeffectiveP <0001P = 0microbiota9variablessupplementationpracticesdiversityingestionbeetrootjuiceNitrate0dose-response-0controlinorganicmeta-analysisincludedsize95%CI:viahigh-nitratediet005lasting210inverserelationacutedose5≥150min prioroptimalidentifyconditionstrategyparticipantcharacteristicsdemographicsmodifysaltsupplementsnitrate-richvegetablesconductedsystematicreviewStudiesidentifiedPubMedEmbaseCochranedatabasesEligibilitycriteriarandomizedcontrolledtrialsassessinghealthyadultsassessvariationusedmeta-regressionmodelscontinuoussubgroupanalysiscategoricaltotal123studiescomprising1705participantsimprovingstandardizedmeandifference[SMD]:101051151I2 = 0%althoughsalts629Practicesinfluencedharmfulbacteriadecreasingergogenicmin fractioninspiredoxygencoefficient:045085028suggestsincreasinglyhypoxicconditionsadministration04914mmol providedprotocols ≥2dobserved025mmol·d-1improvedparticularsessionsmin Ingestion5-14mmol⋅d-1takenappearsgainsathletesawarecontrollingmaydecreaseFactorsModerateEffectIngestionExercisePerformanceAdults:SystematicReviewMeta-AnalysesMeta-Regressionshypoxianitricoxide

Similar Articles

Cited By