Biosynthesis of Guanitoxin Enables Global Environmental Detection in Freshwater Cyanobacteria.

Stella T Lima, Timothy R Fallon, Jennifer L Cordoza, Jonathan R Chekan, Endrews Delbaje, Austin R Hopiavuori, Danillo O Alvarenga, Steffaney M Wood, Hanna Luhavaya, Jackson T Baumgartner, Felipe A D��rr, Augusto Etchegaray, Ernani Pinto, Shaun M K McKinnie, Marli F Fiore, Bradley S Moore
Author Information
  1. Stella T Lima: Center for Nuclear Energy in Agriculture, University of S��o Paulo, Piracicaba, Sao Paulo 13416-000, Brazil. ORCID
  2. Timothy R Fallon: Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States.
  3. Jennifer L Cordoza: Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States.
  4. Jonathan R Chekan: Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States. ORCID
  5. Endrews Delbaje: Center for Nuclear Energy in Agriculture, University of S��o Paulo, Piracicaba, Sao Paulo 13416-000, Brazil. ORCID
  6. Austin R Hopiavuori: Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States.
  7. Danillo O Alvarenga: Department of Biology, University of Copenhagen, Copenhagen, DK 2100, Denmark. ORCID
  8. Steffaney M Wood: Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States.
  9. Hanna Luhavaya: Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States. ORCID
  10. Jackson T Baumgartner: Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States.
  11. Felipe A D��rr: School of Pharmaceutical Sciences, University of S��o Paulo, S��o Paulo, Ribeirao Preto, Sao Paulo 05508-000, Brazil.
  12. Augusto Etchegaray: Center for Life Sciences, Graduate Program in Health Sciences, Pontifical Catholic University of Campinas (PUC-Campinas), Campinas, Sao Paulo 13087-571, Brazil. ORCID
  13. Ernani Pinto: Center for Nuclear Energy in Agriculture, University of S��o Paulo, Piracicaba, Sao Paulo 13416-000, Brazil. ORCID
  14. Shaun M K McKinnie: Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States. ORCID
  15. Marli F Fiore: Center for Nuclear Energy in Agriculture, University of S��o Paulo, Piracicaba, Sao Paulo 13416-000, Brazil. ORCID
  16. Bradley S Moore: Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States. ORCID

Abstract

Harmful cyanobacterial blooms (cyanoHABs) cause recurrent toxic events in global watersheds. Although public health agencies monitor the causal toxins of most cyanoHABs and scientists in the field continue developing precise detection and prediction tools, the potent anticholinesterase neurotoxin, guanitoxin, is not presently environmentally monitored. This is largely due to its incompatibility with widely employed analytical methods and instability in the environment, despite guanitoxin being among the most lethal cyanotoxins. Here, we describe the guanitoxin biosynthesis gene cluster and its rigorously characterized nine-step metabolic pathway from l-arginine in the cyanobacterium ITEP-024. Through environmental sequencing data sets, guanitoxin () biosynthetic genes are repeatedly detected and expressed in municipal freshwater bodies that have undergone past toxic events. Knowledge of the genetic basis of guanitoxin biosynthesis now allows for environmental, biosynthetic gene monitoring to establish the global scope of this neurotoxic organophosphate.

References

  1. Biochemistry. 2015 Dec 1;54(47):7029-40 [PMID: 26551990]
  2. Harmful Algae. 2020 Feb;92:101737 [PMID: 32113603]
  3. Nat Chem Biol. 2015 Sep;11(9):625-31 [PMID: 26284661]
  4. Nat Biotechnol. 2021 Apr;39(4):499-509 [PMID: 33169036]
  5. Org Lett. 2016 Jun 3;18(11):2788-91 [PMID: 27191730]
  6. Nat Prod Rep. 2019 Mar 20;36(3):430-457 [PMID: 30183796]
  7. Nature. 2019 Oct;574(7780):667-670 [PMID: 31610543]
  8. Water Res. 2020 Sep 1;182:115959 [PMID: 32531494]
  9. J Am Chem Soc. 2002 Aug 21;124(33):9729-36 [PMID: 12175230]
  10. Chem Biol. 2000 Oct;7(10):753-64 [PMID: 11033079]
  11. Nature. 2015 Jan 22;517(7535):455-9 [PMID: 25561178]
  12. Nucleic Acids Res. 2021 Jul 2;49(W1):W29-W35 [PMID: 33978755]
  13. J Antibiot (Tokyo). 1968 Feb;21(2):138-46 [PMID: 5674369]
  14. Chembiochem. 2004 Sep 6;5(9):1274-7 [PMID: 15368580]
  15. Appl Environ Microbiol. 2008 Jul;74(13):4044-53 [PMID: 18487408]
  16. Harmful Algae. 2020 Jun;96:101828 [PMID: 32560841]
  17. Chem Biol. 2005 Nov;12(11):1163-8 [PMID: 16298295]
  18. Angew Chem Int Ed Engl. 2014 Feb 10;53(7):1943-8 [PMID: 24505011]
  19. J Am Chem Soc. 2009 Jun 10;131(22):7512-3 [PMID: 19489636]
  20. J Am Chem Soc. 2022 Feb 23;144(7):2861-2866 [PMID: 35142504]
  21. Appl Environ Microbiol. 2008 Feb;74(3):716-22 [PMID: 18065631]
  22. Genome Res. 2009 Sep;19(9):1639-45 [PMID: 19541911]
  23. Vet Rec. 2014 May 10;174(19):484-5 [PMID: 24812185]
  24. Mol Cell Probes. 2013 Oct-Dec;27(5-6):208-14 [PMID: 23850895]
  25. Biochemistry. 2013 Jul 2;52(26):4492-506 [PMID: 23758195]
  26. Org Lett. 2001 Oct 4;3(20):3153-5 [PMID: 11574018]
  27. ACS Chem Biol. 2017 Mar 17;12(3):769-778 [PMID: 28085246]
  28. Nat Rev Microbiol. 2018 Aug;16(8):471-483 [PMID: 29946124]
  29. Antimicrob Agents Chemother. 2012 Jul;56(7):3682-9 [PMID: 22547619]
  30. Chembiochem. 2004 Sep 6;5(9):1281-5 [PMID: 15368582]
  31. Environ Sci Technol. 2021 Jan 5;55(1):44-64 [PMID: 33334098]
  32. Toxicon. 1997 Jun;35(6):901-13 [PMID: 9241784]
  33. Bioinformatics. 2021 Aug 25;37(16):2473-2475 [PMID: 33459763]
  34. Chembiochem. 2004 Sep 6;5(9):1278-81 [PMID: 15368581]
  35. Biochemistry. 2018 Jun 12;57(23):3252-3264 [PMID: 29473729]
  36. N Engl J Med. 1998 Mar 26;338(13):873-8 [PMID: 9516222]
  37. Remote Sens Environ. 2021 Dec 1;266:1-14 [PMID: 36424983]
  38. J Biochem Toxicol. 1991 Fall;6(3):195-201 [PMID: 1770503]

Grants

  1. F32 ES032276/NIEHS NIH HHS
  2. R21 ES032056/NIEHS NIH HHS

MeSH Term

Cyanobacteria
Cyanobacteria Toxins
Environmental Monitoring
Fresh Water
Multigene Family

Chemicals

Cyanobacteria Toxins

Word Cloud

Created with Highcharts 10.0.0guanitoxincyanoHABstoxiceventsglobalbiosynthesisgeneenvironmentalbiosyntheticHarmfulcyanobacterialbloomscauserecurrentwatershedsAlthoughpublichealthagenciesmonitorcausaltoxinsscientistsfieldcontinuedevelopingprecisedetectionpredictiontoolspotentanticholinesteraseneurotoxinpresentlyenvironmentallymonitoredlargelydueincompatibilitywidelyemployedanalyticalmethodsinstabilityenvironmentdespiteamonglethalcyanotoxinsdescribeclusterrigorouslycharacterizednine-stepmetabolicpathwayl-argininecyanobacteriumITEP-024sequencingdatasetsgenesrepeatedlydetectedexpressedmunicipalfreshwaterbodiesundergonepastKnowledgegeneticbasisnowallowsmonitoringestablishscopeneurotoxicorganophosphateBiosynthesisGuanitoxinEnablesGlobalEnvironmentalDetectionFreshwaterCyanobacteria

Similar Articles

Cited By