Neuro-molecular characterization of fish cleaning interactions.

S Ramírez-Calero, J R Paula, E Otjacques, R Rosa, T Ravasi, C Schunter
Author Information
  1. S Ramírez-Calero: The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Rd, Hong Kong SAR, China.
  2. J R Paula: The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Rd, Hong Kong SAR, China.
  3. E Otjacques: MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374, Cascais, Portugal.
  4. R Rosa: MARE-Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374, Cascais, Portugal.
  5. T Ravasi: Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
  6. C Schunter: The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Rd, Hong Kong SAR, China. celiaschunter@gmail.com.

Abstract

Coral reef fish exhibit a large variety of behaviours crucial for fitness and survival. The cleaner wrasse Labroides dimidiatus displays cognitive abilities during interspecific interactions by providing services of ectoparasite cleaning, thus serving as a good example to understand the processes of complex social behaviour. However, little is known about the molecular underpinnings of cooperative behaviour between L. dimidiatus and a potential client fish (Acanthurus leucosternon). Therefore, we investigated the molecular mechanisms in three regions of the brain (Fore-, Mid-, and Hindbrain) during the interaction of these fishes. Here we show, using transcriptomics, that most of the transcriptional response in both species was regulated in the Hindbrain and Forebrain regions and that the interacting behaviour responses of L. dimidiatus involved immediate early gene alteration, dopaminergic and glutamatergic pathways, the expression of neurohormones (such as isotocin) and steroids (e.g. progesterone and estrogen). In contrast, in the client, fewer molecular alterations were found, mostly involving pituitary hormone responses. The particular pathways found suggested synaptic plasticity, learning and memory processes in the cleaner wrasse, while the client indicated stress relief.

References

  1. Horm Behav. 2014 Jul;66(2):346-50 [PMID: 24952103]
  2. Neuroendocrinology. 2005;81(3):183-92 [PMID: 16020927]
  3. Sci Rep. 2019 Sep 4;9(1):12728 [PMID: 31484945]
  4. Int J Mol Sci. 2018 Apr 22;19(4): [PMID: 29690543]
  5. Horm Behav. 2017 Mar;89:145-156 [PMID: 28108326]
  6. Crit Rev Toxicol. 2007 Jan-Feb;37(1-2):11-53 [PMID: 17364704]
  7. Anim Cogn. 2002 Sep;5(3):139-45 [PMID: 12357286]
  8. J Fish Biol. 2018 Aug;93(2):170-191 [PMID: 30043474]
  9. J Comp Neurol. 2010 Aug 15;518(16):3302-26 [PMID: 20575061]
  10. Philos Trans R Soc Lond B Biol Sci. 2010 Sep 12;365(1553):2737-50 [PMID: 20679116]
  11. Curr Biol. 2011 Jul 12;21(13):1140-4 [PMID: 21700458]
  12. Physiol Behav. 2018 Oct 15;195:37-47 [PMID: 30056042]
  13. Philos Trans R Soc Lond B Biol Sci. 2011 Jul 27;366(1574):2155-70 [PMID: 21690132]
  14. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  15. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  16. Eur J Neurosci. 2014 Nov;40(9):3302-15 [PMID: 25145867]
  17. Oecologia. 1997 Jun;111(1):137-143 [PMID: 28307499]
  18. Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17929-34 [PMID: 25453090]
  19. Nucleic Acids Res. 2008 Jun;36(10):3420-35 [PMID: 18445632]
  20. J Chem Neuroanat. 1991 Jan-Feb;4(1):39-61 [PMID: 1672817]
  21. Science. 2008 Nov 7;322(5903):896-900 [PMID: 18988841]
  22. Dev Dyn. 2008 Mar;237(3):788-99 [PMID: 18224707]
  23. Horm Behav. 2013 Aug;64(3):468-76 [PMID: 23899762]
  24. Physiol Rev. 2009 Jan;89(1):121-45 [PMID: 19126756]
  25. Int J Mol Sci. 2019 Mar 20;20(6): [PMID: 30897826]
  26. Gen Comp Endocrinol. 2003 Sep;133(2):260-71 [PMID: 12928015]
  27. Proc Biol Sci. 2003 Nov 7;270 Suppl 2:S242-4 [PMID: 14667394]
  28. Endocrinology. 2006 Nov;147(11):5119-25 [PMID: 16887916]
  29. Physiol Behav. 2015 Jun 1;145:1-7 [PMID: 25802022]
  30. Brain Res. 2019 May 15;1711:156-172 [PMID: 30684457]
  31. PeerJ. 2018 May 24;6:e4830 [PMID: 29844980]
  32. Proc Biol Sci. 2016 Jan 27;283(1823): [PMID: 26791613]
  33. Mol Ecol. 2021 Oct;30(20):5105-5118 [PMID: 34402113]
  34. Behav Brain Res. 2015 Nov 1;294:36-42 [PMID: 26235327]
  35. J Comp Neurol. 2011 Dec 15;519(18):3599-639 [PMID: 21800319]
  36. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  37. J Neurosci. 2000 Dec 15;20(24):9272-6 [PMID: 11125005]
  38. Biol Lett. 2005 Dec 22;1(4):396-9 [PMID: 17148216]
  39. PLoS One. 2012;7(7):e39583 [PMID: 22802939]
  40. Proc Biol Sci. 2015 Oct 7;282(1816):20151099 [PMID: 26423839]
  41. Front Behav Neurosci. 2017 Oct 17;11:191 [PMID: 29089876]
  42. Front Neural Circuits. 2013 Aug 08;7:131 [PMID: 23964204]
  43. Curr Biol. 2004 Jun 22;14(12):1080-3 [PMID: 15203000]
  44. FEBS Open Bio. 2021 Dec;11(12):3201-3210 [PMID: 34110105]
  45. Nat Commun. 2011 Nov 15;2:534 [PMID: 22086335]
  46. R Soc Open Sci. 2017 May 3;4(5):160609 [PMID: 28572985]
  47. Physiol Behav. 2010 Dec 2;101(5):576-87 [PMID: 20851709]
  48. Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):E2253-E2262 [PMID: 28246328]
  49. Trends Ecol Evol. 2014 Oct;29(10):581-9 [PMID: 25154769]
  50. R Soc Open Sci. 2021 Jul 14;8(7):210239 [PMID: 34295522]
  51. J Comp Neurol. 2011 Jan 1;519(1):75-92 [PMID: 21120929]
  52. PLoS Biol. 2020 Jul 14;18(7):e3000411 [PMID: 32663221]
  53. Nat Protoc. 2013 Aug;8(8):1494-512 [PMID: 23845962]
  54. PLoS One. 2011;6(6):e21201 [PMID: 21731670]
  55. J Fish Biol. 2012 Dec;81(7):2127-50 [PMID: 23252731]
  56. Genes Brain Behav. 2008 Apr;7(3):257-65 [PMID: 17680804]
  57. Mol Biol Evol. 2018 Mar 1;35(3):543-548 [PMID: 29220515]
  58. Crit Rev Toxicol. 2007 Jan-Feb;37(1-2):97-115 [PMID: 17364706]

MeSH Term

Animals
Coral Reefs
Fishes
Perciformes
Prosencephalon
Social Behavior