Experimental Handling Challenges Result in Minor Changes in the Phagocytic Capacity and Transcriptome of Head-Kidney Cells of the Salmonid Fish .

Joan Martorell-Ribera, Dirk Koczan, Marzia Tindara Venuto, Torsten Viergutz, Ronald M Brunner, Tom Goldammer, Ulrike Gimsa, Alexander Rebl
Author Information
  1. Joan Martorell-Ribera: Fish Genetics Unit, Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.
  2. Dirk Koczan: Core Facility for Microarray Analysis, Institute of Immunology, University of Rostock, Rostock, Germany.
  3. Marzia Tindara Venuto: Glycobiology Unit, Institute of Reproductive Biology, FBN, Dummerstorf, Germany.
  4. Torsten Viergutz: Service Group Cytometry, Institute of Reproductive Biology, FBN, Dummerstorf, Germany.
  5. Ronald M Brunner: Fish Genetics Unit, Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.
  6. Tom Goldammer: Fish Genetics Unit, Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.
  7. Ulrike Gimsa: Psychophysiology Unit, Institute of Behavioural Physiology, FBN, Dummerstorf, Germany.
  8. Alexander Rebl: Fish Genetics Unit, Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.

Abstract

Aquaculture management involves regular handling procedures, but these can evoke stress responses in farmed fish. We compiled an extensive list of published parameters that indicate the most likely handling-induced physiological deviations from the norm. However, since these parameters are based almost exclusively on studies of rainbow trout and Atlantic salmon, we conducted a handling-challenge experiment with maraena whitefish (). This salmonid fish was sampled at either 3 or 24 h after a single 1-min handling or after 10 days of daily repeated 1-min handling. The cortisol levels were strongly elevated in some individuals at 3 h after the single handling challenge, but these elevations were not significantly different between the challenged and control cohorts. The phagocytic capacity of myeloid head-kidney cells stimulated with fluorophore-labeled, inactivated was significantly decreased in maraena whitefish at 3 h after the handling challenge compared to control fish. Microarray analysis of head-kidney samples from the challenged and control fish revealed 12 differentially expressed genes at 3 h and 70 at 24 h after the single handling episode, but only 5 differentially expressed genes after 10 days of repeated daily handling. The identified genes were assigned to numerous stress- and immune-relevant functional pathways, including "glucocorticoid receptor signaling" (3 h post-challenge), "HIF1A signaling" (24 h post-challenge), or "complement system" (10 days of repeated challenge). Our data reveal the tight interconnection of immune and stress pathways in the head kidney of maraena whitefish and corroborate several parameters previously found regulated in other tissues of handling-stressed rainbow trout. These findings indicate that handling may compromise the health and welfare of maraena whitefish in aquaculture.

Keywords

References

  1. Fish Shellfish Immunol. 2020 Mar;98:950-961 [PMID: 31770645]
  2. Brain Behav. 2021 Feb;11(2):e01960 [PMID: 33295155]
  3. Mar Biotechnol (NY). 2013 Oct;15(5):613-27 [PMID: 23709047]
  4. Front Neurosci. 2020 Dec 04;14:591738 [PMID: 33343287]
  5. J Anat. 1984 May;138 ( Pt 3):503-11 [PMID: 6735912]
  6. Comp Biochem Physiol A Mol Integr Physiol. 2005 Jul;141(3):353-8 [PMID: 16006163]
  7. BMC Genomics. 2005 Jan 06;6:3 [PMID: 15634361]
  8. PLoS One. 2014 Feb 18;9(2):e88492 [PMID: 24558395]
  9. Int Rev Cytol. 2003;230:89-187 [PMID: 14692682]
  10. J Fish Dis. 2021 Mar;44(3):327-336 [PMID: 33112458]
  11. Front Genet. 2018 Jul 19;9:241 [PMID: 30073015]
  12. Gen Comp Endocrinol. 2002 Mar;126(1):90-100 [PMID: 11944970]
  13. Genome Res. 2004 Mar;14(3):478-90 [PMID: 14962987]
  14. Genes (Basel). 2020 Oct 22;11(11): [PMID: 33105610]
  15. Front Endocrinol (Lausanne). 2019 Feb 12;10:62 [PMID: 30809193]
  16. Gen Comp Endocrinol. 1984 Feb;53(2):252-9 [PMID: 6698391]
  17. Comp Biochem Physiol A Mol Integr Physiol. 2020 May;243:110675 [PMID: 32081738]
  18. Fish Shellfish Immunol Rep. 2021 May 12;2:100010 [PMID: 36420509]
  19. Lab Anim. 2006 Oct;40(4):323-40 [PMID: 17018205]
  20. Fish Shellfish Immunol. 2008 Feb;24(2):194-204 [PMID: 18065240]
  21. Fish Physiol Biochem. 1992 May;10(1):67-73 [PMID: 24214196]
  22. NeuroRx. 2004 Apr;1(2):182-8 [PMID: 15717018]
  23. Fish Shellfish Immunol. 2018 Jun;77:328-349 [PMID: 29631025]
  24. Front Vet Sci. 2021 Mar 30;8:616955 [PMID: 33860003]
  25. Trends Immunol. 2003 Aug;24(8):444-8 [PMID: 12909458]
  26. Biology (Basel). 2016 May 24;5(2): [PMID: 27231948]
  27. PLoS Genet. 2014 Aug 28;10(8):e1004601 [PMID: 25166010]
  28. Proteomics. 2008 Jul;8(14):2849-57 [PMID: 18655054]
  29. Comp Biochem Physiol Part D Genomics Proteomics. 2007 Sep;2(3):234-44 [PMID: 20483297]
  30. Dev Comp Immunol. 2004 May 17;28(6):581-92 [PMID: 15177112]
  31. Fish Shellfish Immunol. 2001 Feb;11(2):187-97 [PMID: 11308079]
  32. Gen Comp Endocrinol. 2001 Feb;121(2):163-72 [PMID: 11178882]
  33. Fish Physiol Biochem. 1994 May;13(1):31-40 [PMID: 24203269]
  34. Comp Biochem Physiol Part D Genomics Proteomics. 2007 Dec;2(4):303-15 [PMID: 20483302]
  35. Trends Pharmacol Sci. 2013 Sep;34(9):518-30 [PMID: 23953592]
  36. Front Immunol. 2016 Dec 23;7:631 [PMID: 28066440]
  37. Dev Comp Immunol. 2017 Jan;66:73-83 [PMID: 27387152]
  38. Comp Biochem Physiol A Mol Integr Physiol. 2014 Feb;168:40-9 [PMID: 24239669]
  39. Front Immunol. 2021 Aug 16;12:709910 [PMID: 34484211]
  40. Nat Rev Immunol. 2009 Oct;9(10):692-703 [PMID: 19859064]
  41. Anat Rec (Hoboken). 2019 Jul;302(7):1136-1143 [PMID: 30417546]
  42. Comp Biochem Physiol Part D Genomics Proteomics. 2008 Mar;3(1):51-66 [PMID: 20483207]
  43. PLoS One. 2017 Dec 13;12(12):e0189103 [PMID: 29236729]
  44. J Fish Biol. 2021 Aug;99(2):345-353 [PMID: 33751560]

Word Cloud

Created with Highcharts 10.0.0handlinghmaraenawhitefish3fishstressparameters24single10daysrepeatedchallengecontrolgenesindicaterainbowtrout1-mindailysignificantlychallengedhead-kidneydifferentiallyexpressedpathwayssignaling"post-challengeheadkidneyAquaculturemanagementinvolvesregularprocedurescanevokeresponsesfarmedcompiledextensivelistpublishedlikelyhandling-inducedphysiologicaldeviationsnormHoweversincebasedalmostexclusivelystudiesAtlanticsalmonconductedhandling-challengeexperimentsalmonidsampledeithercortisollevelsstronglyelevatedindividualselevationsdifferentcohortsphagocyticcapacitymyeloidcellsstimulatedfluorophore-labeledinactivateddecreasedcomparedMicroarrayanalysissamplesrevealed1270episode5identifiedassignednumerousstress-immune-relevantfunctionalincluding"glucocorticoidreceptor"HIF1A"complementsystem"datarevealtightinterconnectionimmunecorroborateseveralpreviouslyfoundregulatedtissueshandling-stressedfindingsmaycompromisehealthwelfareaquacultureExperimentalHandlingChallengesResultMinorChangesPhagocyticCapacityTranscriptomeHead-KidneyCellsSalmonidFishgeneexpressionprofilingmicroarrayphagocytosis

Similar Articles

Cited By (2)