SARS-CoV-2 Permissive glioblastoma cell line for high throughput antiviral screening.

Emiel Vanhulle, Joren Stroobants, Becky Provinciael, Anita Camps, Sam Noppen, Piet Maes, Kurt Vermeire
Author Information
  1. Emiel Vanhulle: KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium.
  2. Joren Stroobants: KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium.
  3. Becky Provinciael: KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium.
  4. Anita Camps: KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium.
  5. Sam Noppen: KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium.
  6. Piet Maes: KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Herestraat 49, 3000, Leuven, Belgium.
  7. Kurt Vermeire: KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium. Electronic address: kurt.vermeire@kuleuven.be.

Abstract

Despite the great success of the administered vaccines against SARS-CoV-2, the virus can still spread, as evidenced by the current circulation of the highly contagious Omicron variant. This emphasizes the additional need to develop effective antiviral countermeasures. In the context of early preclinical studies for antiviral assessment, robust cellular infection systems are required to screen drug libraries. In this study, we reported the implementation of a human glioblastoma cell line, stably expressing ACE2, in a SARS-CoV-2 cytopathic effect (CPE) reduction assay. These glioblastoma cells, designated as U87.ACE2, expressed ACE2 and cathepsin B abundantly, but had low cellular levels of TMPRSS2 and cathepsin L. The U87.ACE2 cells fused highly efficiently and quickly with SARS-CoV-2 spike expressing cells. Furthermore, upon infection with SARS-CoV-2 wild-type virus, the U87.ACE2 cells displayed rapidly a clear CPE that resulted in complete cell lysis and destruction of the cell monolayer. By means of several readouts we showed that the U87.ACE2 cells actively replicate SARS-CoV-2. Interestingly, the U87.ACE2 cells could be successfully implemented in an MTS-based colorimetric CPE reduction assay, providing IC values for Remdesivir and Nirmatrelvir in the (low) nanomolar range. Lastly, the U87.ACE2 cells were consistently permissive to all tested SARS-CoV-2 variants of concern, including the current Omicron variant. Thus, ACE2 expressing glioblastoma cells are highly permissive to SARS-CoV-2 with productive viral replication and with the induction of a strong CPE that can be utilized in high-throughput screening platforms.

Keywords

References

  1. Stem Cell Reports. 2021 Mar 9;16(3):505-518 [PMID: 33636110]
  2. Cell Res. 2020 Mar;30(3):269-271 [PMID: 32020029]
  3. PLoS Pathog. 2021 Apr 22;17(4):e1009500 [PMID: 33886690]
  4. Planta Med. 2017 May;83(7):615-623 [PMID: 27806409]
  5. Brain Res. 2021 May 1;1758:147344 [PMID: 33556379]
  6. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11727-11734 [PMID: 32376634]
  7. J Proteome Res. 2021 Jan 1;20(1):49-59 [PMID: 33347311]
  8. AIDS. 2004 Nov 5;18(16):2115-25 [PMID: 15577644]
  9. Stem Cell Res. 2021 Jul;54:102436 [PMID: 34186311]
  10. Cell Stem Cell. 2020 Dec 3;27(6):951-961.e5 [PMID: 33113348]
  11. PLoS Pathog. 2021 Feb 17;17(2):e1009225 [PMID: 33596266]
  12. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  13. J Biol Chem. 2021 Jul;297(1):100847 [PMID: 34058196]
  14. Nature. 2020 Mar;579(7798):270-273 [PMID: 32015507]
  15. Science. 2020 Mar 13;367(6483):1260-1263 [PMID: 32075877]
  16. Biomedicines. 2021 Nov 04;9(11): [PMID: 34829850]
  17. EMBO J. 2020 Oct 15;39(20):e106230 [PMID: 32876341]
  18. Antiviral Res. 2020 Jun;178:104786 [PMID: 32251767]
  19. Nat Commun. 2017 Aug 29;8(1):370 [PMID: 28851864]
  20. Antiviral Res. 2020 Jun;178:104792 [PMID: 32272173]
  21. J Mol Cell Biol. 2021 Dec 30;13(10):705-711 [PMID: 34289037]
  22. Cell. 2020 Apr 16;181(2):281-292.e6 [PMID: 32155444]
  23. PLoS Pathog. 2022 Jan 13;18(1):e1010171 [PMID: 35025963]
  24. Antimicrob Agents Chemother. 2021 Jun 17;65(7):e0009721 [PMID: 33903110]
  25. Nature. 2022 Feb;602(7898):671-675 [PMID: 35016199]
  26. J Exp Med. 2021 Mar 1;218(3): [PMID: 33433624]
  27. Nature. 2022 Mar;603(7902):706-714 [PMID: 35104837]
  28. J Med Virol. 2021 Mar;93(3):1403-1408 [PMID: 32767684]
  29. Biotechniques. 2022 Jun;72(6):245-254 [PMID: 35445605]
  30. Emerg Microbes Infect. 2022 Dec;11(1):277-283 [PMID: 34951565]
  31. Cell Stem Cell. 2020 Dec 3;27(6):937-950.e9 [PMID: 33010822]
  32. Clin Epidemiol Glob Health. 2021 Jan-Mar;9:123-127 [PMID: 32838064]
  33. Sci Rep. 2021 Mar 8;11(1):5376 [PMID: 33686154]
  34. J Pathol. 2004 Jun;203(2):631-7 [PMID: 15141377]
  35. Front Oncol. 2020 Nov 16;10:566599 [PMID: 33312949]
  36. Mol Pharmacol. 2001 Jul;60(1):164-73 [PMID: 11408611]
  37. J Med Virol. 2022 Jul;94(7):3101-3111 [PMID: 35229317]
  38. Cell Stem Cell. 2020 Jul 2;27(1):125-136.e7 [PMID: 32579880]
  39. Science. 2020 Mar 27;367(6485):1444-1448 [PMID: 32132184]
  40. Nat Commun. 2020 Mar 27;11(1):1620 [PMID: 32221306]
  41. Cell Res. 2020 Oct;30(10):928-931 [PMID: 32753756]
  42. Sci Adv. 2020 Jul 31;6(31): [PMID: 32937591]
  43. Nature. 2020 Jun;582(7813):561-565 [PMID: 32365353]
  44. ALTEX. 2020 Jun 26;37(4):665-671 [PMID: 32591839]
  45. Retrovirology. 2004 Mar 08;1:2 [PMID: 15169555]
  46. J Med Virol. 2021 Sep;93(9):5260-5276 [PMID: 33851732]
  47. Life Sci Alliance. 2020 Jul 23;3(9): [PMID: 32703818]
  48. Lancet Microbe. 2020 May;1(1):e14-e23 [PMID: 32835326]
  49. Nature. 2020 Mar;579(7798):265-269 [PMID: 32015508]

MeSH Term

Angiotensin-Converting Enzyme 2
Antiviral Agents
COVID-19 Vaccines
Cell Line
Glioblastoma
High-Throughput Screening Assays
Humans
Peptidyl-Dipeptidase A
SARS-CoV-2
Spike Glycoprotein, Coronavirus
COVID-19 Drug Treatment

Chemicals

Antiviral Agents
COVID-19 Vaccines
Spike Glycoprotein, Coronavirus
spike protein, SARS-CoV-2
Peptidyl-Dipeptidase A
Angiotensin-Converting Enzyme 2

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2ACE2cellsU87CPEglioblastomacellhighlyOmicronantivirallineexpressingviruscancurrentvariantcellularinfectionscreenreductionassaycathepsinlowpermissivescreeningDespitegreatsuccessadministeredvaccinesstillspreadevidencedcirculationcontagiousemphasizesadditionalneeddevelopeffectivecountermeasurescontextearlypreclinicalstudiesassessmentrobustsystemsrequireddruglibrariesstudyreportedimplementationhumanstablycytopathiceffectdesignatedexpressedBabundantlylevelsTMPRSS2LfusedefficientlyquicklyspikeFurthermoreuponwild-typedisplayedrapidlyclearresultedcompletelysisdestructionmonolayermeansseveralreadoutsshowedactivelyreplicateInterestinglysuccessfullyimplementedMTS-basedcolorimetricprovidingICvaluesRemdesivirNirmatrelvirnanomolarrangeLastlyconsistentlytestedvariantsconcernincludingThusproductiveviralreplicationinductionstrongutilizedhigh-throughputplatformsPermissivehighthroughputAntiviralGlioblastomaU87 cell

Similar Articles

Cited By