Optical Microscopy Systems for the Detection of Unlabeled Nanoparticles.

Ralf P Friedrich, Mona Kappes, Iwona Cicha, Rainer Tietze, Christian Braun, Regine Schneider-Stock, Roland Nagy, Christoph Alexiou, Christina Janko
Author Information
  1. Ralf P Friedrich: Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany.
  2. Mona Kappes: Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany.
  3. Iwona Cicha: Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany.
  4. Rainer Tietze: Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany.
  5. Christian Braun: Institute of Legal Medicine, Ludwig-Maximilians-Universität München, München, 80336, Germany.
  6. Regine Schneider-Stock: Experimental Tumor Pathology, Institute of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany.
  7. Roland Nagy: Department Elektrotechnik-Elektronik-Informationstechnik (EEI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91058, Germany.
  8. Christoph Alexiou: Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany.
  9. Christina Janko: Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, 91054, Germany. ORCID

Abstract

Label-free detection of nanoparticles is essential for a thorough evaluation of their cellular effects. In particular, nanoparticles intended for medical applications must be carefully analyzed in terms of their interactions with cells, tissues, and organs. Since the labeling causes a strong change in the physicochemical properties and thus also alters the interactions of the particles with the surrounding tissue, the use of fluorescently labeled particles is inadequate to characterize the effects of unlabeled particles. Further, labeling may affect cellular uptake and biocompatibility of nanoparticles. Thus, label-free techniques have been recently developed and implemented to ensure a reliable characterization of nanoparticles. This review provides an overview of frequently used label-free visualization techniques and highlights recent studies on the development and usage of microscopy systems based on reflectance, darkfield, differential interference contrast, optical coherence, photothermal, holographic, photoacoustic, total internal reflection, surface plasmon resonance, Rayleigh light scattering, hyperspectral and reflectance structured illumination imaging. Using these imaging modalities, there is a strong enhancement in the reliability of experiments concerning cellular uptake and biocompatibility of nanoparticles, which is crucial for preclinical evaluations and future medical applications.

Keywords

References

  1. Adv Mater. 2013 Mar 6;25(9):1265-9 [PMID: 23166096]
  2. Phys Rev Lett. 2014 Jan 31;112(4):047601 [PMID: 24580492]
  3. Ann Anat. 2009 Apr;191(2):153-70 [PMID: 19135344]
  4. Nano Lett. 2013 Jun 12;13(6):2738-42 [PMID: 23721106]
  5. Ecotoxicol Environ Saf. 2019 Apr 15;170:77-86 [PMID: 30529623]
  6. Phys Chem Chem Phys. 2013 Mar 28;15(12):4110-29 [PMID: 23420338]
  7. Sci Rep. 2020 Oct 12;10(1):17009 [PMID: 33046757]
  8. Nanoscale. 2022 Feb 24;14(8):3062-3068 [PMID: 34993531]
  9. Nat Rev Drug Discov. 2021 Feb;20(2):101-124 [PMID: 33277608]
  10. Biosens Bioelectron. 2016 Jan 15;75:238-46 [PMID: 26319167]
  11. Lasers Surg Med. 2020 Jan;52(1):13-16 [PMID: 31709601]
  12. Int J Biochem Cell Biol. 2017 Feb;83:65-70 [PMID: 28013148]
  13. Part Fibre Toxicol. 2011 Jan 19;8(1):2 [PMID: 21247485]
  14. Nat Commun. 2021 Jan 4;12(1):34 [PMID: 33397947]
  15. Biosens Bioelectron. 2016 Jul 15;81:23-31 [PMID: 26913504]
  16. ACS Appl Mater Interfaces. 2021 Feb 10;13(5):6069-6080 [PMID: 33501834]
  17. Nat Nanotechnol. 2020 Dec;15(12):1005-1011 [PMID: 32989239]
  18. Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):E135-43 [PMID: 22160683]
  19. Nanoscale. 2020 Apr 21;12(15):8397-8403 [PMID: 32239001]
  20. Environ Sci Pollut Res Int. 2020 Jun;27(16):19214-19225 [PMID: 31884543]
  21. Anal Bioanal Chem. 2022 Jan;414(3):1297-1312 [PMID: 34718837]
  22. J Biophotonics. 2021 Oct;14(10):e202100099 [PMID: 34241969]
  23. Acta Biomater. 2016 Sep 1;41:1-16 [PMID: 27265153]
  24. J Phys Chem Lett. 2018 Jun 7;9(11):2886-2892 [PMID: 29750870]
  25. J Microsc. 2018 Jul;271(1):69-83 [PMID: 29630741]
  26. Microsc Res Tech. 2016 May;79(5):349-58 [PMID: 26864497]
  27. Science. 2002 Aug 16;297(5584):1160-3 [PMID: 12183624]
  28. J Biomed Opt. 2010 May-Jun;15(3):036015 [PMID: 20615017]
  29. Contrast Media Mol Imaging. 2013 Jan-Feb;8(1):50-6 [PMID: 23109392]
  30. ACS Appl Mater Interfaces. 2017 Jun 21;9(24):20340-20347 [PMID: 28530093]
  31. Small. 2013 Oct 25;9(20):3485-92 [PMID: 23606501]
  32. Dermatol Online J. 2020 Mar 15;26(3): [PMID: 32609438]
  33. J Biophotonics. 2017 May;10(5):674-682 [PMID: 27273138]
  34. Biophys J. 2009 Nov 4;97(9):2640-7 [PMID: 19883608]
  35. J Vis Exp. 2015 Dec 08;(106):e53317 [PMID: 26709947]
  36. Anal Bioanal Chem. 2019 Jul;411(19):4277-4292 [PMID: 30762098]
  37. Anal Bioanal Chem. 2019 Sep;411(23):6119-6128 [PMID: 31388714]
  38. MethodsX. 2015 Jun 10;2:306-15 [PMID: 26151001]
  39. J Phys Chem C Nanomater Interfaces. 2018 Nov 28;122(47):27024-27031 [PMID: 30627302]
  40. Beilstein J Nanotechnol. 2015 Jan 23;6:263-80 [PMID: 25671170]
  41. Acta Biomater. 2019 Nov;99:295-306 [PMID: 31437636]
  42. Mol Cell Probes. 2008 Feb;22(1):14-23 [PMID: 17686610]
  43. Nanoscale. 2018 Sep 13;10(35):16508-16520 [PMID: 29938276]
  44. Sci Adv. 2021 Mar 19;7(12): [PMID: 33741594]
  45. Angew Chem Int Ed Engl. 2019 Jan 8;58(2):572-576 [PMID: 30397979]
  46. Biomater Res. 2021 Apr 21;25(1):12 [PMID: 33883044]
  47. Chemphyschem. 2008 Apr 4;9(5):707-12 [PMID: 18383236]
  48. Chembiochem. 2019 Nov 4;20(21):2793-2799 [PMID: 31145537]
  49. Opt Lett. 1997 Dec 15;22(24):1905-7 [PMID: 18188403]
  50. Int J Nanomedicine. 2021 Sep 21;16:6455-6475 [PMID: 34584411]
  51. Biol Bull. 2016 Aug;231(1):40-60 [PMID: 27638694]
  52. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017 Jan;9(1): [PMID: 27038222]
  53. Methods Mol Biol. 2018;1805:123-138 [PMID: 29971716]
  54. ACS Nano. 2020 Nov 20;: [PMID: 33216527]
  55. J Biomed Opt. 2015 Mar;20(3):036018 [PMID: 25822955]
  56. Biotechniques. 2007 Nov;43(5):627-8, 630, 632 passim [PMID: 18072592]
  57. Sci Rep. 2020 Feb 25;10(1):3362 [PMID: 32099027]
  58. PLoS One. 2017 Jan 20;12(1):e0170165 [PMID: 28107406]
  59. Int J Nanomedicine. 2021 Aug 31;16:6003-6016 [PMID: 34511902]
  60. Chem Commun (Camb). 2021 Apr 4;57(26):3263-3266 [PMID: 33650610]
  61. Arch Otolaryngol Head Neck Surg. 2004 Aug;130(8):923-8 [PMID: 15313861]
  62. Biomed Opt Express. 2014 May 01;5(6):1731-43 [PMID: 24940536]
  63. J Nucl Med. 2014 Dec;55(12):1919-22 [PMID: 25413134]
  64. Adv Exp Med Biol. 2021;1310:211-238 [PMID: 33834439]
  65. Science. 2017 May 26;356(6340):832-837 [PMID: 28546208]
  66. NanoImpact. 2020 Jan;17: [PMID: 33251378]
  67. Chem Soc Rev. 2018 Apr 3;47(7):2485-2508 [PMID: 29542749]
  68. Environ Pollut. 2021 Feb 15;271:116337 [PMID: 33383415]
  69. Photochem Photobiol. 2008 Nov-Dec;84(6):1421-30 [PMID: 19067964]
  70. Cell Motil Cytoskeleton. 2009 Feb;66(2):68-79 [PMID: 19130480]
  71. Science. 2017 May 26;356(6340):837-840 [PMID: 28546209]
  72. Nano Lett. 2019 Dec 11;19(12):8934-8940 [PMID: 31790264]
  73. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021 Jan;13(1):e1661 [PMID: 32755036]
  74. Cold Spring Harb Protoc. 2011 Sep 01;2011(9): [PMID: 21880823]
  75. Theranostics. 2020 Jul 11;10(20):8996-9031 [PMID: 32802176]
  76. Oral Oncol. 2008 Nov;44(11):1059-66 [PMID: 18396445]
  77. Sci Rep. 2021 Jun 18;11(1):12902 [PMID: 34145319]
  78. Anal Chem. 2021 Mar 2;93(8):4100-4107 [PMID: 33596049]
  79. PLoS One. 2015 Apr 24;10(4):e0124052 [PMID: 25909631]
  80. J Phys Chem A. 2020 Feb 27;124(8):1659-1665 [PMID: 31994889]
  81. Chem Commun (Camb). 2020 Jul 28;56(60):8440-8443 [PMID: 32583826]
  82. Biomaterials. 2015 May;51:226-237 [PMID: 25771013]
  83. Biophys J. 2010 May 19;98(9):2014-23 [PMID: 20441766]
  84. J Microsc. 2014 Jun;254(3):115-21 [PMID: 24749905]
  85. Sensors (Basel). 2020 Sep 16;20(18): [PMID: 32947809]
  86. Int J Nanomedicine. 2015 Jun 26;10:4185-201 [PMID: 26170658]
  87. J Biophotonics. 2015 May;8(5):401-7 [PMID: 24961507]
  88. Nano Lett. 2021 May 26;21(10):4484-4493 [PMID: 33978427]
  89. J Biomed Opt. 2013 Jun;18(6):061214 [PMID: 23224242]
  90. Sensors (Basel). 2021 Jul 23;21(15): [PMID: 34372238]
  91. Small. 2021 Feb;17(8):e2004287 [PMID: 33522074]
  92. Opt Express. 2007 Dec 24;15(26):18275-82 [PMID: 19551125]
  93. Int J Nanomedicine. 2017 Apr 19;12:3207-3220 [PMID: 28458541]
  94. PLoS One. 2016 Oct 3;11(10):e0159980 [PMID: 27695038]
  95. Ultramicroscopy. 2018 Feb;185:72-80 [PMID: 29216604]
  96. APL Bioeng. 2021 Jul 30;5(3):031510 [PMID: 34368604]
  97. Skin Res Technol. 2020 Mar;26(2):263-268 [PMID: 31556193]
  98. Biomed Opt Express. 2016 Feb 23;7(3):963-78 [PMID: 27231601]
  99. Nanomaterials (Basel). 2021 Mar 13;11(3): [PMID: 33805818]
  100. Sci Rep. 2017 May 10;7(1):1643 [PMID: 28490732]
  101. NMR Biomed. 2013 Jul;26(7):756-65 [PMID: 23065771]
  102. Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):11150-11155 [PMID: 30254155]
  103. Adv Exp Med Biol. 2018;1068:59-71 [PMID: 29943296]
  104. Chem Rev. 2013 Apr 10;113(4):2469-527 [PMID: 23410134]
  105. Chemistry. 2018 Sep 20;24(53):14162-14170 [PMID: 30028043]
  106. Science. 1991 Nov 22;254(5035):1178-81 [PMID: 1957169]
  107. Biochem Biophys Res Commun. 2015 Dec 18;468(3):463-70 [PMID: 26271592]
  108. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015 Jul-Aug;7(4):565-79 [PMID: 25611199]
  109. Sci Total Environ. 2021 Jun 10;772:145478 [PMID: 33571774]
  110. Environ Sci Pollut Res Int. 2020 Jan;27(2):1923-1940 [PMID: 31760622]
  111. Pharmaceutics. 2021 Jul 30;13(8): [PMID: 34452135]
  112. Nanoscale. 2020 Apr 28;12(16):8847-8857 [PMID: 32254877]
  113. Chem Sci. 2021 Jan 4;12(8):3017-3024 [PMID: 34164070]
  114. Appl Opt. 1996 Jul 1;35(19):3441-6 [PMID: 21102733]
  115. Mikrochim Acta. 2019 Sep 4;186(10):667 [PMID: 31485856]
  116. Materials (Basel). 2018 Feb 06;11(2): [PMID: 29415420]
  117. Nanoscale. 2017 Aug 24;9(33):12060-12067 [PMID: 28795734]
  118. Nanoscale. 2015 Oct 28;7(40):16647-57 [PMID: 26154822]
  119. J Biomed Opt. 2016 Jan;21(1):16006 [PMID: 26780224]
  120. PLoS One. 2020 Mar 11;15(3):e0230217 [PMID: 32160259]
  121. Opt Express. 2017 May 1;25(9):9860-9871 [PMID: 28468365]
  122. J Biophotonics. 2019 Nov;12(11):e201900166 [PMID: 31365187]
  123. Nature. 2013 Aug 1;500(7460):54-8 [PMID: 23903748]
  124. J Invest Dermatol. 1995 Jun;104(6):946-52 [PMID: 7769264]
  125. PLoS One. 2019 Jul 31;14(7):e0219078 [PMID: 31365549]
  126. Appl Opt. 2001 Nov 1;40(31):5650-7 [PMID: 18364854]
  127. Nanoscale. 2014 Feb 21;6(4):2307-15 [PMID: 24413584]
  128. J Biophotonics. 2016 Oct;9(10):987-993 [PMID: 27528427]
  129. Mol Pharm. 2015 Nov 2;12(11):3862-70 [PMID: 26402436]
  130. Analyst. 2018 Dec 3;143(24):5940-5949 [PMID: 30345433]
  131. Science. 2008 Jun 6;320(5881):1332-6 [PMID: 18535242]
  132. J Invest Dermatol. 1999 Sep;113(3):293-303 [PMID: 10469324]
  133. J Neurosci. 2018 Oct 31;38(44):9459-9467 [PMID: 30381437]
  134. Nanomaterials (Basel). 2018 Sep 26;8(10): [PMID: 30261637]
  135. Appl Opt. 1981 Aug 1;20(15):2656-64 [PMID: 20333014]
  136. ACS Cent Sci. 2020 Dec 23;6(12):2339-2346 [PMID: 33376795]
  137. Opt Lett. 2011 Dec 15;36(24):4773-5 [PMID: 22179879]
  138. Arch Biochem Biophys. 2020 Nov 15;694:108592 [PMID: 32971033]
  139. Small. 2014 Feb 12;10(3):556-65 [PMID: 24115690]
  140. Nanomaterials (Basel). 2020 Mar 27;10(4): [PMID: 32230761]
  141. Nano Lett. 2021 Feb 24;21(4):1666-1671 [PMID: 33539103]
  142. Nanotoxicology. 2020 May;14(4):504-532 [PMID: 32037933]
  143. Nanotoxicology. 2014 Dec;8(8):833-42 [PMID: 23927462]
  144. Adv Drug Deliv Rev. 2013 May;65(5):622-48 [PMID: 22975010]
  145. J Microsc. 2008 Jul;231(Pt 1):168-79 [PMID: 18638200]
  146. PLoS One. 2020 Dec 1;15(12):e0240268 [PMID: 33259485]
  147. Small. 2014 Jan 15;10(1):135-42 [PMID: 23864531]
  148. Nanoscale Res Lett. 2016 Dec;11(1):297 [PMID: 27299652]
  149. Adv Healthc Mater. 2020 Mar;9(5):e1901627 [PMID: 31977166]
  150. Rev Sci Instrum. 2019 Feb;90(2):023705 [PMID: 30831696]
  151. J Funct Biomater. 2015 Jun 30;6(3):526-46 [PMID: 26133387]
  152. Opt Express. 2019 Feb 18;27(4):3837-3850 [PMID: 30876008]
  153. Artif Organs. 2021 Nov;45(11):1272-1299 [PMID: 34245037]
  154. Biosens Bioelectron. 2015 Apr 15;66:412-6 [PMID: 25486538]
  155. ACS Nano. 2021 Feb 23;15(2):2240-2250 [PMID: 33399450]
  156. J Med Chem. 2021 Jun 24;64(12):8798-8805 [PMID: 34081463]
  157. ACS Nano. 2019 Dec 24;13(12):13637-13644 [PMID: 31398007]
  158. Pharmaceutics. 2020 Oct 22;12(11): [PMID: 33105866]
  159. Cancer Res. 2003 May 1;63(9):1999-2004 [PMID: 12727808]
  160. Chem Asian J. 2021 May 3;16(9):1150-1156 [PMID: 33724702]
  161. Science. 2017 Jul 7;357(6346):67-71 [PMID: 28572453]
  162. Bio Protoc. 2020 Sep 05;10(17):e3732 [PMID: 33659393]
  163. Nanotechnol Sci Appl. 2021 Apr 06;14:91-100 [PMID: 33854305]
  164. Pharm Res. 2012 May;29(5):1189-202 [PMID: 22161287]
  165. Curr Drug Targets. 2015;16(14):1671-81 [PMID: 26601723]
  166. Nanotechnol Sci Appl. 2020 Dec 09;13:119-130 [PMID: 33328727]
  167. Pharm Res. 2021 Mar;38(3):429-450 [PMID: 33655395]
  168. Anal Sci. 2021 Mar 10;37(3):507-511 [PMID: 33310993]

MeSH Term

Microscopy
Nanoparticles
Reproducibility of Results
Surface Plasmon Resonance

Word Cloud

Created with Highcharts 10.0.0nanoparticlesimagingcellularparticlesreflectancedetectioneffectsmedicalapplicationsinteractionslabelingstronguptakebiocompatibilitylabel-freetechniquesmicroscopyscatteringLabel-freeessentialthoroughevaluationparticularintendedmustcarefullyanalyzedtermscellstissuesorgansSincecauseschangephysicochemicalpropertiesthusalsoalterssurroundingtissueusefluorescentlylabeledinadequatecharacterizeunlabeledmayaffectThusrecentlydevelopedimplementedensurereliablecharacterizationreviewprovidesoverviewfrequentlyusedvisualizationhighlightsrecentstudiesdevelopmentusagesystemsbaseddarkfielddifferentialinterferencecontrastopticalcoherencephotothermalholographicphotoacoustictotalinternalreflectionsurfaceplasmonresonanceRayleighlighthyperspectralstructuredilluminationUsingmodalitiesenhancementreliabilityexperimentsconcerningcrucialpreclinicalevaluationsfutureOpticalMicroscopySystemsDetectionUnlabeledNanoparticlesholotomographylabelfreenanoparticlenon-fluorescent

Similar Articles

Cited By