Genome-wide characterization and identification of candidate ERF genes involved in various abiotic stress responses in sesame (Sesamum indicum L.).

Ruqi Su, Senouwa Segla Koffi Dossou, Komivi Dossa, Rong Zhou, Aili Liu, Yanping Zhong, Sheng Fang, Xiurong Zhang, Ziming Wu, Jun You
Author Information
  1. Ruqi Su: Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
  2. Senouwa Segla Koffi Dossou: Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
  3. Komivi Dossa: CIRAD, UMR AGAP Institut, F-34398, Montpellier, France.
  4. Rong Zhou: Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
  5. Aili Liu: Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
  6. Yanping Zhong: Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
  7. Sheng Fang: Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
  8. Xiurong Zhang: Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
  9. Ziming Wu: Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China. wuzm@jxau.edu.cn.
  10. Jun You: Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China. junyou@caas.cn.

Abstract

BACKGROUND: The adverse effects of climate change on crop production are constraining breeders to develop high-quality environmentally stable varieties. Hence, efforts are being made to identify key genes that could be targeted for enhancing crop tolerance to environmental stresses. ERF transcription factors play an important role in various abiotic stresses in plants. However, the roles of the ERF family in abiotic stresses tolerance are still largely unknown in sesame, the "queen" of oilseed crops.
RESULTS: In total, 114 sesame ERF genes (SiERFs) were identified and characterized. 96.49% of the SiERFs were distributed unevenly on the 16 linkage groups of the sesame genome. The phylogenetic analysis with the Arabidopsis ERFs (AtERFs) subdivided SiERF subfamily proteins into 11 subgroups (Groups I to X; and VI-L). Genes in the same subgroup exhibited similar structure and conserved motifs. Evolutionary analysis showed that the expansion of ERF genes in sesame was mainly induced by whole-genome duplication events. Moreover, cis-acting elements analysis showed that SiERFs are mostly involved in environmental responses. Gene expression profiles analysis revealed that 59 and 26 SiERFs are highly stimulated under drought and waterlogging stress, respectively. In addition, qRT-PCR analyses indicated that most of SiERFs are also significantly up-regulated under osmotic, submerge, ABA, and ACC stresses. Among them, SiERF23 and SiERF54 were the most induced by both the abiotic stresses, suggesting their potential for targeted improvement of sesame response to multiple abiotic stresses.
CONCLUSION: This study provides a comprehensive understanding of the structure, classification, evolution, and abiotic stresses response of ERF genes in sesame. Moreover, it offers valuable gene resources for functional characterization towards enhancing sesame tolerance to multiple abiotic stresses.

Keywords

References

  1. Mol Biotechnol. 2019 Feb;61(2):153-172 [PMID: 30600447]
  2. Plant Physiol. 2013 Jul;162(3):1566-82 [PMID: 23719892]
  3. BMC Plant Biol. 2019 Nov 20;19(1):506 [PMID: 31747904]
  4. Pharmacogn Rev. 2014 Jul;8(16):147-55 [PMID: 25125886]
  5. Sci Rep. 2018 Mar 12;8(1):4331 [PMID: 29531231]
  6. Genes (Basel). 2020 Dec 07;11(12): [PMID: 33297327]
  7. Nat Plants. 2020 Nov;6(11):1335-1344 [PMID: 33106638]
  8. Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 [PMID: 9396791]
  9. Molecules. 2021 Feb 07;26(4): [PMID: 33562414]
  10. Nat Commun. 2020 Aug 14;11(1):4082 [PMID: 32796832]
  11. BMC Genomics. 2019 Oct 16;20(1):748 [PMID: 31619177]
  12. Trends Plant Sci. 2021 Jan;26(1):23-32 [PMID: 32883605]
  13. Plant Cell Physiol. 2011 Feb;52(2):344-60 [PMID: 21169347]
  14. Plants (Basel). 2021 Jan 11;10(1): [PMID: 33440756]
  15. Plant Cell. 2016 Jan;28(1):160-80 [PMID: 26668304]
  16. Arabidopsis Book. 2013 Nov 01;11:e0166 [PMID: 24273463]
  17. Nucleic Acids Res. 2021 Jan 8;49(D1):D458-D460 [PMID: 33104802]
  18. Plant Physiol. 2016 Sep;172(1):575-88 [PMID: 27382137]
  19. GM Crops Food. 2013 Jan-Mar;4(1):1-9 [PMID: 23160541]
  20. BMC Plant Biol. 2016 Jul 30;16(1):171 [PMID: 27475988]
  21. Biochem Biophys Res Commun. 2002 Jan 25;290(3):998-1009 [PMID: 11798174]
  22. Pharmacogn Mag. 2016 May;12(Suppl 2):S170-4 [PMID: 27279703]
  23. Protoplasma. 2017 Jul;254(4):1705-1714 [PMID: 27995331]
  24. Allergy. 2016 Oct;71(10):1405-13 [PMID: 27332789]
  25. Int J Mol Sci. 2018 May 31;19(6): [PMID: 29857524]
  26. Bioinformatics. 2013 Oct 1;29(19):2487-9 [PMID: 23842809]
  27. Funct Integr Genomics. 2014 Sep;14(3):467-77 [PMID: 24902799]
  28. Physiol Mol Biol Plants. 2020 Jul;26(7):1463-1476 [PMID: 32647461]
  29. Int J Mol Sci. 2020 Sep 23;21(19): [PMID: 32977426]
  30. Plant J. 2012 Jul;71(2):273-87 [PMID: 22417285]
  31. PLoS One. 2020 Mar 16;15(3):e0226055 [PMID: 32176699]
  32. Genes (Basel). 2019 Sep 26;10(10): [PMID: 31561536]
  33. Mol Plant. 2020 Aug 3;13(8):1194-1202 [PMID: 32585190]
  34. J Exp Bot. 2012 Jun;63(10):3899-911 [PMID: 22442415]
  35. Plant Physiol. 2006 Feb;140(2):411-32 [PMID: 16407444]
  36. BMC Genomics. 2016 Aug 03;17:538 [PMID: 27488048]
  37. BMC Plant Biol. 2021 Sep 7;21(1):408 [PMID: 34493199]
  38. Front Plant Sci. 2014 Nov 11;5:640 [PMID: 25426135]
  39. Sci Rep. 2017 Aug 18;7(1):8755 [PMID: 28821876]
  40. Mol Biol Evol. 2011 Oct;28(10):2731-9 [PMID: 21546353]
  41. Sci Data. 2019 Oct 15;6(1):204 [PMID: 31615988]
  42. Front Plant Sci. 2020 Sep 04;11:566647 [PMID: 33013987]
  43. Genes (Basel). 2019 Sep 30;10(10): [PMID: 31575043]
  44. Foods. 2020 Mar 30;9(4): [PMID: 32235516]
  45. Hortic Res. 2019 Jul 1;6:83 [PMID: 31645944]
  46. J Exp Bot. 2009;60(13):3781-96 [PMID: 19602544]
  47. 3 Biotech. 2020 Mar;10(3):139 [PMID: 32158635]
  48. Food Chem. 2019 Aug 15;289:360-368 [PMID: 30955624]
  49. Genom Data. 2017 Jan 27;11:122-124 [PMID: 28180087]
  50. Eur J Pharmacol. 2017 Nov 15;815:512-521 [PMID: 29032105]
  51. BMC Plant Biol. 2019 Feb 20;19(1):84 [PMID: 30786863]
  52. Nucleic Acids Res. 2021 Jan 8;49(D1):D412-D419 [PMID: 33125078]
  53. J Exp Bot. 2017 Jan 1;68(3):673-685 [PMID: 28204526]
  54. BMC Plant Biol. 2017 Sep 11;17(1):152 [PMID: 28893196]
  55. Int J Mol Sci. 2019 Aug 13;20(16): [PMID: 31412539]
  56. Genes (Basel). 2017 Dec 12;8(12): [PMID: 29231869]
  57. Biochem Biophys Res Commun. 2011 Oct 14;414(1):135-41 [PMID: 21946064]
  58. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  59. Genomics. 2021 Jan;113(1 Pt 1):276-290 [PMID: 33249174]
  60. PLoS One. 2016 Mar 02;11(3):e0149912 [PMID: 26934874]
  61. Ecotoxicology. 2017 Aug;26(6):841-854 [PMID: 28536792]
  62. Plant Physiol. 2015 Sep;169(1):23-31 [PMID: 25944828]
  63. J Exp Bot. 2008;59(15):4095-107 [PMID: 18832187]
  64. PLoS One. 2014 Jun 06;9(6):e99168 [PMID: 24905353]
  65. Crit Rev Food Sci Nutr. 2007;47(7):651-73 [PMID: 17943496]
  66. Mol Genet Genomics. 2010 Dec;284(6):455-75 [PMID: 20922546]
  67. Front Genet. 2021 Mar 31;12:632155 [PMID: 33868370]
  68. DNA Cell Biol. 2019 Oct;38(10):1056-1068 [PMID: 31403329]
  69. BMC Plant Biol. 2019 Jun 20;19(1):267 [PMID: 31221078]
  70. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8 [PMID: 19458158]
  71. Plants (Basel). 2019 Jun 29;8(7): [PMID: 31261970]
  72. Front Plant Sci. 2019 Jul 23;10:940 [PMID: 31396249]

Grants

  1. CARS-14/China Agriculture Research System
  2. CARS-14/China Agriculture Research System
  3. CAAS-ASTIP-2016-OCRI/Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences
  4. CAAS-ASTIP-2016-OCRI/Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences
  5. JXARS-18/Jiangxi Agriculture Research System
  6. 32060438/National Natural Science Foundation of China
  7. GJJ190226/Jiangxi Provincial Science and Technology Plan projects

MeSH Term

Arabidopsis
Gene Expression Regulation, Plant
Multigene Family
Phylogeny
Plant Proteins
Sesamum
Stress, Physiological

Chemicals

Plant Proteins

Word Cloud

Created with Highcharts 10.0.0stressessesameERFabioticgenesSiERFsanalysistolerancestresscroptargetedenhancingenvironmentalfactorsvariousfamilystructureshowedinducedMoreoverinvolvedresponsesGeneexpressionresponsemultiplegenecharacterizationSesamumindicumBACKGROUND:adverseeffectsclimatechangeproductionconstrainingbreedersdevelophigh-qualityenvironmentallystablevarietiesHenceeffortsmadeidentifykeytranscriptionplayimportantroleplantsHoweverrolesstilllargelyunknown"queen"oilseedcropsRESULTS:total114identifiedcharacterized9649%distributedunevenly16linkagegroupsgenomephylogeneticArabidopsisERFsAtERFssubdividedSiERFsubfamilyproteins11subgroupsGroupsXVI-LGenessubgroupexhibitedsimilarconservedmotifsEvolutionaryexpansionmainlywhole-genomeduplicationeventscis-actingelementsmostlyprofilesrevealed5926highlystimulateddroughtwaterloggingrespectivelyadditionqRT-PCRanalysesindicatedalsosignificantlyup-regulatedosmoticsubmergeABAACCAmongSiERF23SiERF54suggestingpotentialimprovementCONCLUSION:studyprovidescomprehensiveunderstandingclassificationevolutionoffersvaluableresourcesfunctionaltowardsGenome-wideidentificationcandidateLAbioticTranscription

Similar Articles

Cited By