Disability specific equivalence scales: a case-control approach applied to the cost of acquired brain injuries.

Eleftherios Giovanis, Martina Menon, Federico Perali
Author Information
  1. Eleftherios Giovanis: Faculty of Economics and Administrative Sciences, Department of International Trade and Business, İzmir Bakırçay University, Menemen, 35665, Izmir, Turkey. giovanis95@gmail.com. ORCID
  2. Martina Menon: Department of Economics, University of Verona, Via Cantarane 24, 37129, Verona, Italy.
  3. Federico Perali: Department of Economics, University of Verona, Via Cantarane 24, 37129, Verona, Italy.

Abstract

This study estimates the household costs resulting from acquired brain injuries in terms of a reduction in the standard of living. The application uses primary data collected in the Verona and Florence provinces of Italy integrating highly detailed health information with information about consumption, income, wealth, time-use and relational well-being describing the standard of living. In general, the estimates of disability costs in previous studies are obtained from survey data without a specific focus on individuals with disabilities but collect information on the general health status. In contrast, this study exploits highly detailed information on a sample of "cases" with a disability, whose intensity is measured by the highly precise European quality of life measure-5 domain-5 (EQ-5D) instrument, to be compared with a sample of "control" formed by households without disabled members. The disability scales have been estimated using a Structural Equation Modelling (SEM) based procedure. We then implement interpersonal comparisons on the health income dimension in a theoretically plausible way, testing the independence hypothesis of equivalence scales. Our study finds that on average disabled households need an additional amount of about €1800 per month to reach the same standard of livings as the non-disabled households corresponding to a scale of 1.78.

Keywords

References

  1. Austin, P. C. (2009). Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Statistics in Medicine, 28(25), 3083–3107. [PMID: 19757444]
  2. Austin, P. C. (2010). Statistical criteria for selecting the optimal number of untreated subjects matched to each treated subject when using many-to-one matching on the propensity score. American Journal of Epidemiology, 172(9), 1092–1097. [PMID: 20802241]
  3. Austin, P. C. (2011). An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behavioral Research, 46(3), 399–424. [PMID: 21818162]
  4. Austin, P. C., & Cafri, G. (2020). Variance estimation when using propensity-score matching with replacement with survival or time-to-event outcomes. Statistics in Medicine, 39(11), 1623–1640. [PMID: 32109319]
  5. Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246. [PMID: 2320703]
  6. Berthoud, R. (1991) Meeting the costs of disability. in G., Dalley (Ed.), Disability and Social Policy, Policy Studies Institute, London, Chapter 4, pp. 64–100.
  7. Berthoud, R., Lakey, J., & McKay, S. (1993). The Economic Problems of Disabled People. Policy Studies Institute.
  8. Biggeri, M., Ciani, F., Menon, M. and Perali, F. (2015) Health conditions and household extra needs: The case of acquired brain injuries., 2015 HDCA 2015 Conference Capabilities on the Move: Mobility and Aspirations. Washington, D.C., USA September 10–13.
  9. Blundell, R., Duncan, A., & Pendakur, K. (1998). Semiparametric estimation and consumer demand. Journal of Applied Econometrics, 13(5), 435–461. [DOI: 10.1002/(SICI)1099-1255(1998090)13]
  10. Bollen, K. A. (1980). Issues in the comparative measurement of political democracy. American Sociological Review, 80, 370–390. [DOI: 10.2307/2095172]
  11. Brazier, J. E., Harper, R., Munro, J., Walters, S. J., & Snaith, M. L. (1999). Generic and condition-specific outcome measures for people with osteoarthritis of the knee. Rheumatology, 38(9), 870–877. [PMID: 10515649]
  12. Brener, I., Harman, J. S., Kelleher, K. J., & Yeates, K. O. (2004). Medical costs of mild to moderate traumatic brain injury in children. The Journal of Head Trauma Rehabilitation, 19(5), 405–412. [PMID: 15597031]
  13. Brooks, C. A., Lindstrom, J., McCray, J., & Whiteneck, G. G. (1995). Cost of medical care for a population-based sample of persons surviving traumatic brain injury. The Journal of Head Trauma Rehabilitation, 10(4), 1–13. [DOI: 10.1097/00001199-199508000-00002]
  14. Brooks, R. (1996). EuroQol: The current state of play. Health Policy, 37(1), 53–72. [PMID: 10158943]
  15. Cameron, C. M., Purdie, D. M., Kliewer, E. V., & McClure, R. J. (2008). Ten-year outcomes following traumatic brain injury: A population-based cohort. Brain Injury, 22(6), 437–449. [PMID: 18465385]
  16. Chan, V., Pole, J. D., Keightley, M., Mann, R. E., & Colantonio, A. (2016). Children and youth with non-traumatic brain injury: A population based perspective. BMC Neurology, 16(1), 1–10. [DOI: 10.1186/s12883-016-0631-2]
  17. Chavas, J. P., Menon, M., Pagani, E., & Perali, F. (2018). Collective household welfare and intra-household inequality. Theoretical Economics, 13(2), 667–696. [DOI: 10.3982/TE2459]
  18. Chen, A., Bushmeneva, K., Zagorski, B., Colantonio, A., Parsons, D., & Wodchis, W. P. (2012). Direct cost associated with acquired brain injury in Ontario. BMC Neurology, 12(1), 1–12. [DOI: 10.1186/1471-2377-2-1]
  19. Cullinan, J., Gannon, B., & Lyons, S. (2011). Estimating the extra cost of living for people with disabilities. Health Economics, 20, 582–599. [PMID: 20535832]
  20. Cullinan, J., Gannon, B., & O’Shea, E. (2013). The welfare implications of disability for older people in Ireland. The European Journal of Health Economics, 14(2), 171–183. [PMID: 21984224]
  21. Dalla Chiara, E., Menon, M., & Perali, F. (2019). An integrated database to measure living standards. Journal of Official Statistics, 35(3), 531–576. [DOI: 10.2478/jos-2019-0023]
  22. Decancq, K., & Lugo, M. A. (2013). Weights in multidimensional indices of wellbeing: An overview. Econometric Reviews, 32(1), 7–34. [DOI: 10.1080/07474938.2012.690641]
  23. Dewan, M. C., Rattani, A., Gupta, S., Baticulon, R. E., Hung, Y. C., Punchak, M., & Park, K. B. (2018). Estimating the global incidence of traumatic brain injury. Journal of Neurosurgery, 130(4), 1080–1097. [PMID: 29701556]
  24. Diener, E., Lucas, R. E., & Scollon, C. N. (2006). Beyond the hedonic treadmill: Revising the adaptation theory of well-being. American Psychologist, 61(4), 305–314. [PMID: 16719675]
  25. Dolan, P. (1994). Search for a critical appraisal of EuroQol: A response by the EuroQol group to Gafni and Birch. Health Policy, 28(1), 67–69. [PMID: 10134588]
  26. Dolan, P. (1997). Modeling valuations for EuroQol health states. Medical Care, 35, 1095–1108. [PMID: 9366889]
  27. Dolan, P. (2011). Using happiness to value health, 2011. Office of Health Economics, Monograph, number 000176. https://www.ohe.org/publications/using-happiness-value-health
  28. Easterlin, R. A. (2006). Life cycle happiness and its sources: Intersections of psychology, economics, and demography. Journal of Economic Psychology, 27(4), 463–482. [DOI: 10.1016/j.joep.2006.05.002]
  29. EuroQol Group. (1990). Euroqol- a new facility for the measurement of health-related quality of life. Health Policy, 16, 199–203. [DOI: 10.1016/0168-8510(90)90421-9]
  30. Feng, Y. S., Kohlmann, T., Janssen, M. F., & Buchholz, I. (2021). Psychometric properties of the EQ-5D-5L: A systematic review of the literature. Quality of Life Research, 30(3), 647–673. [PMID: 33284428]
  31. Fleminger, S., Oliver, D. L., Williams, W. H., & Evans, J. (2003). The neuropsychiatry of depression after brain injury. Neuropsychological Rehabilitation, 13(1–2), 65–87. [PMID: 21854328]
  32. Fransen, M., & Edmonds, J. (1999). Reliability and validity of the EuroQol in patients with osteoarthritis of the knee. Rheumatology, 38(9), 807–813. [PMID: 10515639]
  33. Fusco, A., Guio, A. C. and Marlier, E. (2011). Income poverty and material deprivation in european countries. LISER Working Paper Series 2011–04, LISER. https://liser.elsevierpure.com/ws/portalfiles/portal/11783862/Working+Paper+n%C2%B02011-04
  34. Ghislandi, S., Apolone, G., Garattini, L., & Ghislandi, I. (2002). Is EQ-5D a valid measure of HRQoL in patients with movement disorders? The European Journal of Health Economics, 3(2), 125–130. [PMID: 15609136]
  35. Giustini, A., Pistarini, C., & Pisoni, C. (2013). Traumatic and non-traumatic brain injury. Handbook of Clinical Neurology, 110, 401–409. [PMID: 23312659]
  36. Goldberger, A. S. (1973). Structural Equation Models: An Overview in Structural Equation Models in the Social Sciences, edited by Goldberger, A. S. and Duncan, O. D. New York: Seminar Press, 1–18.
  37. Guio, A. C. (2009). What can be learned from deprivation indicators in Europe. indicator subgroup of the Social Protection Committee, 10. http://www.bristol.ac.uk/poverty/downloads/keyofficialdocuments/Deprivation%20indicators%20in%20Europe.pdf . Luxembourg: Office for Official Publications of the European Communities.
  38. Guio, A. C., Fusco, A. and Marlier, E. (2009). A European Union approach to material deprivation using EU-SILC and Eurobarometer data. IRISS Working Paper Series 2009–19, IRISS at CEPS/INSTEAD. https://liser.elsevierpure.com/ws/portalfiles/portal/11784722/Working+Paper+n%C2%B02009-19
  39. Gusi, N., Olivares, P. R., & Rajendram, R. (2010). The EQ-5D Health-Related Quality of Life Questionnaire. In V. R. Preedy & R. R. Watson (Eds.), Handbook of Disease Burdens and Quality of Life Measures (pp. 87–99). Springer. [DOI: 10.1007/978-0-387-78665-0_5]
  40. Hancock, R., Morciano, M., Pudney, S., & Zantomio, F. (2015). Do household surveys give a coherent view of disability benefit targeting?: A multisurvey latent variable analysis for the older population in Great Britain. JouRnal of the Royal Statistical Society: Series A (statistics in Society), 178(4), 815–836. [PMID: 27524869]
  41. Hancock, G. R., & Mueller, R. O. (2006). Structural equation modeling: A second course. CT: Greenwich.
  42. Hardle, W., & Marron, J. S. (1990). Semiparametric comparison of regression curves. The Annals of Statistics, 18, 63–89. [DOI: 10.1214/aos/1176347493]
  43. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. [DOI: 10.1080/10705519909540118]
  44. Indecon (2004). Cost of disability research report. National Disability Authority, Dublin. https://nda.ie/File-upload/Indecon-Report-on-the-Cost-of-Disability.pdf
  45. Jacobs, H. E. (1988). The Los Angeles head injury survey: Procedures and initial findings. Archives of Physical Medicine and Rehabilitation, 69(6), 425–431. [PMID: 3132129]
  46. Johnson, J. A., Luo, N., Shaw, J. W., Kind, P., & Coons, S. J. (2005). Valuations of EQ-5D health states: are the United States and United Kingdom different? Medical Care, 43, 221–228. [PMID: 15725978]
  47. Jones, A., & O’Donnell, O. (1995). Equivalence scales and the costs of disability. Journal of Public Economics, 56, 273–289. [DOI: 10.1016/0047-2727(93)01416-8]
  48. Kind, P. (1996). The EuroQol instrument: an index of health-related quality of life. In: Spilker, B. (Ed.) Quality of life and pharmacoeconomics in clinical trials. Lippincott-Raven: Philadelphia, Chapter 22: 191–201.
  49. Kraus, J. F., & Nourjah, P. (1988). The epidemiology of mild, uncomplicated brain injury. The Journal of Trauma, 28(12), 1637–1643. [PMID: 3199464]
  50. Lewbel, A. (1991). The rank of demand systems: theory and nonparametric estimation. Econometrica: Journal of the Econometric Society, 59, 711–730. [DOI: 10.2307/2938225]
  51. Lewbel, A. and Pendakur, K. (2006). Equivalence scales. Entry for the New Palgrave Dictionary of Economics. 2 Edition, mimeo, Department of Economics, Boston College.
  52. Lucas, R. E. (2007). Adaptation and the set-point model of subjective well-being: Does happiness change after major life events? Current Directions in Psychological Science, 16(2), 75–79. [DOI: 10.1111/j.1467-8721.2007.00479.x]
  53. Martin, J., & White, A. (1998). The Financial Circumstances of Disabled Adults Living in Private Households. HMSO.
  54. Matthews, A. and Truscott, P. (1990). Disability, household income and expenditure: a follow-up survey of disabled adults in the family expenditure survey. Department of Social Security Research Report No. 2. HMSO: London.
  55. Menon, M., Perali, F. and Polin, V. (2016). Il nuovo indicatore della situazione economica equivalente: E una vera riforma? Rivista di Politica Economica, pp. 305–350.
  56. Menon, M., Perali, F. and Sierminska, E. (2017). An Efficiency Comparison of Means Testing Tools: Money Metric or Counting Approach? Centre for Household, Income, Labour and Demographic Economics (CHILD)-CCA, Working Paper No. 57, Moncalieri, Italy.
  57. Mitra, S., Palmer, M., Kim, H., Mont, D., & Groce, N. (2017). Extra costs of living with a disability: A review and agenda for research. Disability and Health Journal, 10(4), 475–484. [PMID: 28501322]
  58. Morciano, M., Hancock, R., & Pudney, S. (2015). Disability costs and equivalence scales in the older population in great britain. Review of Income and Wealth, 61(3), 494–514. [DOI: 10.1111/roiw.12108]
  59. Nolan, B., & Whelan, C. T. (1996). Resources, deprivation, and poverty. Oxford University Press.
  60. Nolan, B. and Whelan, C. (2007). On the multidimensionality of poverty and social exclusion. In Inequality and poverty re-examined. In J. Micklewright and S. Jenkins (Eds.), Poverty and Inequality: New Directions, (pp. 146–165). Oxford University Press. United Kingdom.
  61. Ommaya, A. K., Ommaya, A. K., Dannenberg, A. L., & Salazar, A. M. (1996). Causation, incidence, and costs of traumatic brain injury in the US military medical system. Journal of Trauma and Acute Care Surgery, 40(2), 211–217. [DOI: 10.1097/00005373-199602000-00007]
  62. Pan, W., & Bai, H. (2015). Propensity score analysis: Concepts and issues. In W. Pan & H. Bai (Eds.), Propensity Score Analysis: Fundamentals and Developments, Chapter 1 (pp. 3–19). Guilford Publications Inc.
  63. Perali, F. (2003). The behavioral and welfare analysis of consumption: The cost of children, equity and poverty in Colombia. Springer Science & Business Media Dordrecht. [DOI: 10.1007/978-1-4757-3729-5]
  64. Pendakur, K. (1999). Semiparametric estimates and tests of base-independent equivalence scales. Journal of Econometrics, 88(1), 1–40. [DOI: 10.1016/S0304-4076(98)00020-7]
  65. Pinkse, C.A.P. and Robinson, P.M. (1995). Pooling nonparametric estimates of regression functions with a similar shape. In Maddala, G., Phillips, P. and Srinivisan, T.N. (Eds.), Advances in Econometrics and Quantitative Economics, Chapter 7, pp. 172–195.
  66. Ponsford, J., & Fleminger, S. (2005). Long term outcome of traumatic brain injury. British Medical Journal, 331(7530), 1419–1420. [PMID: 16356951]
  67. Rabin, R., & de Charro, F. (2001). EQ-5D: A measure of health status from the EuroQol Group. Annals of Medicine, 33, 337–343. [PMID: 11491192]
  68. Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), 41–55. [DOI: 10.1093/biomet/70.1.41]
  69. Rosenbaum, P. R., & Rubin, D. B. (1985). Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. The American Statistician, 39(1), 33–38.
  70. Rosenbaum, P. R. (2020). Modern Algorithms for Matching in Observational Studies. Annual Review of Statistics and Its Application, 7(1), 143–176. [DOI: 10.1146/annurev-statistics-031219-041058]
  71. Rosenfeld, J. V., Maas, A. I., Bragge, P., Morganti-Kossmann, M. C., Manley, G. T., & Gruen, R. L. (2012). Early management of severe traumatic brain injury. Lancet, 380, 1088–1098. [PMID: 22998718]
  72. Rubin, D. B. (1977). Assignment to treatment group on the basis of a covariate. Journal of Educational Statistics, 2(1), 1–26. [DOI: 10.3102/10769986002001001]
  73. Savedo, W.D. and Schultz, T.P. (2000). Wealth from health. linking social investments to earnings in Latin America. Inter-American Development Bank, Washington, DC
  74. Saunders, P. (2007). The costs of disability and the incidence of poverty. Australian Journal of Social Issues, 42(4), 461–480. [DOI: 10.1002/j.1839-4655.2007.tb00072.x]
  75. Sen, A. (1999). Development as Freedom (1st ed.). Oxford University Press.
  76. Short, H., Al Sayah, F., Ohinmaa, A., & Johnson, J. A. (2021). The performance of the EQ-5D-3L in screening for anxiety and depressive symptoms in hospital and community settings. Health and Quality of Life Outcomes, 19(1), 1–12. [DOI: 10.1186/s12955-021-01731-x]
  77. Stallard, E. (2011). Estimates of the incidence, prevalence, duration, intensity, and cost of chronic disability among the US elderly. North American Actuarial Journal, 15(1), 32–58. [DOI: 10.1080/10920277.2011.10597608]
  78. Thompson, P., Buckle, J., & Lavery, M. (1998). Being disabled costs more than they said. Disablement Income Group Charitable Trust.
  79. Thompson, H. J., McCormick, W. C., & Kagan, S. H. (2006). Traumatic brain injury in older adults: Epidemiology, outcomes, and future implications. Journal of the American Geriatrics Society, 54(10), 1590–1595. [PMID: 17038079]
  80. Thornhill, S., Teasdale, G. M., Murray, G. D., McEwen, J., Roy, C. W., & Penny, K. I. (2000). Disability in young people and adults one year after head injury: Prospective cohort study. British Medical Journal, 320(7250), 1631–1635. [PMID: 10856063]
  81. Tibble, M. (2005). Review of existing research on the extra costs of disability. Department for Work and Pensions Working Paper No. 21. Leeds, UK, Corporate Document Services. https://webarchive.nationalarchives.gov.uk/ukgwa/20130128102031/http://www.dwp.gov.uk/asd/asd5/WP21.pdf
  82. Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1–10. [DOI: 10.1007/BF02291170]
  83. Tunthanathip, T., Oearsakul, T., Tanvejsilp, P., Sae-Heng, S., Kaewborisutsakul, A., Madteng, S., & Inkate, S. (2021). Predicting the health-related quality of life in patients following traumatic brain injury. The Surgery Journal, 7(02), e100–e110. [PMID: 34159258]
  84. Van Dijck, J. T., Dijkman, M. D., Ophuis, R. H., de Ruiter, G. C., Peul, W. C., & Polinder, S. (2019). In-hospital costs after severe traumatic brain injury: A systematic review and quality assessment. PLoS ONE, 14(5), e0216743. [PMID: 31071199]
  85. Vangel, S. J., Jr., Rapport, L. J., Hanks, R. A., & Black, K. L. (2005). Long-term medical care utilization and costs among traumatic brain injury survivors. American Journal of Physical Medicine & Rehabilitation, 84(3), 153–160. [DOI: 10.1097/01.PHM.0000154896.55045.E7]
  86. Willer, B. S., Allen, K. M., Liss, M., & Zicht, M. S. (1991). Problems and coping strategies of individuals with traumatic brain injury and their spouses. Archives of Physical Medicine and Rehabilitation, 72(7), 460–464. [PMID: 2059116]
  87. Wood, R. L., & Yurdakul, L. K. (1997). Change in relationship status following traumatic brain injury. Brain Injury, 11(7), 491–501. [PMID: 9210986]
  88. Yang, Z., Busschbach, J., Liu, G., & Luo, N. (2018). EQ-5D-5L norms for the urban Chinese population in China. Health and Quality of Life Outcomes, 16(1), 1–9. [DOI: 10.1186/s12955-018-1036-2]
  89. Yatchew, A. (1999). An elementary nonparametric differencing test of equality of regression functions. Economics Letters, 62(3), 271–278. [DOI: 10.1016/S0165-1765(98)00243-2]
  90. Yatchew, A. (2003). Semiparametric regression for the applied econometrician. Cambridge University Press. [DOI: 10.1017/CBO9780511615887]
  91. Zaidi, A., & Burchardt, T. (2005). Comparing incomes when needs differ: Equivalization for the extra costs of disability. Review of Income and Wealth, 51, 89–114. [DOI: 10.1111/j.1475-4991.2005.00146.x]
  92. Zhou, T., Guan, H., Wang, L., Zhang, Y., Rui, M., & Ma, A. (2021). Health-Related Quality of Life in Patients with Different Diseases Measured with the EQ-5D-5L: A Systematic Review. Frontiers in Public Health, 9, 802. [DOI: 10.3389/fpubh.2021.675523]

MeSH Term

Humans
Quality of Life
Persons with Disabilities
Income
Family Characteristics
Case-Control Studies

Word Cloud

Created with Highcharts 10.0.0informationstudycostsbrainstandardlivinghighlyhealthdisabilityhouseholdsscalesestimatesacquiredinjuriesdatadetailedincomegeneralwithoutspecificsampledisabledStructuralequivalenceDisabilityhouseholdresultingtermsreductionapplicationusesprimarycollectedVeronaFlorenceprovincesItalyintegratingconsumptionwealthtime-userelationalwell-beingdescribingpreviousstudiesobtainedsurveyfocusindividualsdisabilitiescollectstatuscontrastexploits"cases"whoseintensitymeasuredpreciseEuropeanqualitylifemeasure-5domain-5EQ-5Dinstrumentcompared"control"formedmembersestimatedusingEquationModellingSEMbasedprocedureimplementinterpersonalcomparisonsdimensiontheoreticallyplausiblewaytestingindependencehypothesisfindsaverageneedadditionalamount€1800permonthreachlivingsnon-disabledcorrespondingscale178scales:case-controlapproachappliedcostAcquiredinjuryEquivalenceInterpersonalcomparisonStandardequationmodelling

Similar Articles

Cited By