Contribution of G Protein-Coupled Receptor 55 to Periaqueductal Gray-Mediated Antinociception in the Inflammatory Pain.

Henry Blanton, Sabiha Armin, Steven Muenster, Mary Abood, Khalid Benamar
Author Information
  1. Henry Blanton: Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, Texas, USA.
  2. Sabiha Armin: Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, Texas, USA.
  3. Steven Muenster: Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, Texas, USA.
  4. Mary Abood: Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA. ORCID
  5. Khalid Benamar: Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, Texas, USA. ORCID

Abstract

The brain mechanism of inflammatory pain is an understudied area of research, particularly concerning the descending pain modulatory system. The G protein-coupled receptor 55 (GPR55) is a lysophosphatidylinositol-sensitive receptor that has also been involved in cannabinoid signaling. It is widely expressed throughout the central nervous system, including the periaqueductal gray (PAG), a brainstem area and key element of the descending pain modulatory system. In this study, we used behavioral, stereotaxic injections, pharmacological tools, and two inflammatory pain models (formalin and carrageenan) to determine if GPR55 in the PAG plays a role in the pain associated with inflammation in rats. It was found that the blockade of GPR55 action in PAG can drive the descending pain modulatory system to mitigate inflammatory pain. These data show that GPR55 plays a role in the descending pain modulatory system in inflammatory pain.

Keywords

References

  1. Mol Pharmacol. 2015 Aug;88(2):265-72 [PMID: 25972448]
  2. Brain Res. 2004 Sep 3;1019(1-2):22-7 [PMID: 15306234]
  3. Behav Brain Res. 2021 May 21;406:113248 [PMID: 33745983]
  4. Pain Rep. 2021 Mar 05;6(1):e897 [PMID: 33693301]
  5. Mol Endocrinol. 2011 Nov;25(11):1835-48 [PMID: 21964594]
  6. Sci Rep. 2017 Apr 20;7(1):944 [PMID: 28428628]
  7. Eur J Pharmacol. 2008 Sep 11;592(1-3):93-5 [PMID: 18656466]
  8. Pain. 1997 Mar;70(1):53-8 [PMID: 9106809]
  9. J Basic Clin Physiol Pharmacol. 2016 May 1;27(3):297-302 [PMID: 26669245]
  10. Eur J Pain. 2012 Jan;16(1):38-48 [PMID: 21783394]
  11. Trends Neurosci. 2002 Jun;25(6):319-25 [PMID: 12086751]
  12. Brain Res Rev. 2009 Apr;60(1):214-25 [PMID: 19146877]
  13. J Pharmacol Exp Ther. 2008 May;325(2):641-5 [PMID: 18281594]
  14. Int J Mol Sci. 2019 Mar 09;20(5): [PMID: 30857270]
  15. Annu Rev Neurosci. 1991;14:219-45 [PMID: 1674413]
  16. Br J Pharmacol. 2007 Dec;152(7):1092-101 [PMID: 17876302]
  17. Biochem Biophys Res Commun. 2007 Nov 3;362(4):928-34 [PMID: 17765871]
  18. Br J Pharmacol. 2005 Apr;144(8):1029-31 [PMID: 15700026]
  19. Pain. 1988 Jan;32(1):77-88 [PMID: 3340425]
  20. Ann N Y Acad Sci. 2000;909:12-24 [PMID: 10911921]
  21. Pain. 2008 Sep 30;139(1):225-236 [PMID: 18502582]

MeSH Term

Animals
Pain
Pain Measurement
Periaqueductal Gray
Rats
Receptors, Cannabinoid
Receptors, G-Protein-Coupled

Chemicals

GPR55 protein, rat
Receptors, Cannabinoid
Receptors, G-Protein-Coupled

Word Cloud

Created with Highcharts 10.0.0painsysteminflammatorydescendingmodulatoryGPR55PAGareaGreceptor55periaqueductalgrayplaysrolebrainmechanismunderstudiedresearchparticularlyconcerningprotein-coupledlysophosphatidylinositol-sensitivealsoinvolvedcannabinoidsignalingwidelyexpressedthroughoutcentralnervousincludingbrainstemkeyelementstudyusedbehavioralstereotaxicinjectionspharmacologicaltoolstwomodelsformalincarrageenandetermineassociatedinflammationratsfoundblockadeactioncandrivemitigatedatashowContributionProtein-CoupledReceptorPeriaqueductalGray-MediatedAntinociceptionInflammatoryPaincannabinoids

Similar Articles

Cited By