The role of polymeric chains as a protective environment for improving the stability and efficiency of fluorogenic peptide substrates.

Ana Arnaiz, Marta Guembe-García, Estefanía Delgado-Pinar, Artur J M Valente, Saturnino Ibeas, José M García, Saúl Vallejos
Author Information
  1. Ana Arnaiz: Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001, Burgos, Spain.
  2. Marta Guembe-García: Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001, Burgos, Spain.
  3. Estefanía Delgado-Pinar: CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
  4. Artur J M Valente: CQC, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
  5. Saturnino Ibeas: Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001, Burgos, Spain.
  6. José M García: Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001, Burgos, Spain.
  7. Saúl Vallejos: Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001, Burgos, Spain. svallejos@ubu.es.

Abstract

We have faced the preparation of fully water-soluble fluorescent peptide substrate with long-term environmental stability (in solution more than 35 weeks) and, accordingly, with stable results in the use of this probe in determining the activity of enzymes. We have achieved this goal by preparing a co-polymer of the commercial N-vinyl-2-pyrrolidone (99.5% mol) and a fluorescent substrate for trypsin activity determination having a vinylic group (0.5%). The activity of trypsin has been measured in water solutions of this polymer over time, contrasted against the activity of both the commercial substrate Z-L-Arg-7-amido-4-methylcoumarin hydrochloride and its monomeric derivative, prepared ad-hoc. Initially, the activity of the sensory polymer was 74.53 ± 1.72 nmol/min/mg of enzyme, while that of the commercial substrate was 20.44 ± 0.65 nmol/min/mg of enzyme, the former maintained stable along weeks and the latter with a deep decay to zero in three weeks. The 'protection' effect exerted by the polymer chain has been studied by solvation studies by UV-Vis spectroscopy, steady-state & time resolved fluorescence, thermogravimetry and isothermal titration calorimetry.

References

  1. Sci Rep. 2017 Mar 22;7:45049 [PMID: 28327670]
  2. Anal Biochem. 2013 Mar 15;434(2):233-41 [PMID: 23262283]
  3. Mol Biol Cell. 2011 Dec;22(23):4647-56 [PMID: 21976697]
  4. Photochem Photobiol. 2002 Apr;75(4):327-34 [PMID: 12003120]
  5. Sci Rep. 2017 Mar 13;7:44321 [PMID: 28287171]
  6. J Phys Chem B. 2008 Mar 13;112(10):2829-36 [PMID: 18278900]
  7. Compr Rev Food Sci Food Saf. 2020 Nov;19(6):3390-3415 [PMID: 33337065]
  8. J Hosp Infect. 2018 Jan;98(1):46-52 [PMID: 28917570]
  9. J Mater Sci. 2020;55(7):3005-3021 [PMID: 32431364]
  10. Methods Enzymol. 1981;80 Pt C:341-61 [PMID: 6210826]
  11. Adv Skin Wound Care. 2012 Jul;25(7):304-14 [PMID: 22713781]
  12. Chem Commun (Camb). 2016 Sep 29;52(80):11915-11918 [PMID: 27722416]
  13. Microb Ecol. 2017 Apr;73(3):710-721 [PMID: 27742997]
  14. Nat Biotechnol. 2005 Mar;23(3):355-60 [PMID: 15696158]
  15. Am Fam Physician. 2020 Feb 1;101(3):159-166 [PMID: 32003952]
  16. AAPS J. 2015 Jan;17(1):111-20 [PMID: 25338742]
  17. PLoS One. 2012;7(8):e43011 [PMID: 22900081]
  18. Bioorg Med Chem Lett. 2015 Mar 1;25(5):1064-6 [PMID: 25666819]
  19. Infect Dis Ther. 2015 Jun;4(2):173-86 [PMID: 26055392]
  20. Front Plant Sci. 2018 Jul 10;9:986 [PMID: 30042779]
  21. Spectrochim Acta A Mol Biomol Spectrosc. 2015 Feb 5;136 Pt C:1875-80 [PMID: 25467682]
  22. Environ Sci Pollut Res Int. 2021 Dec;28(46):65945-65951 [PMID: 34327641]
  23. J Insect Physiol. 2017 Jan;96:73-81 [PMID: 27789296]
  24. J Hazard Mater. 2019 Mar 5;365:725-732 [PMID: 30472458]
  25. Virulence. 2016 Jul 3;7(5):602-9 [PMID: 27028760]
  26. Anal Biochem. 2015 Oct 1;486:24-34 [PMID: 26119333]
  27. J AOAC Int. 2019 Jul 1;102(4):1235-1240 [PMID: 30709427]
  28. Cytometry. 2001 Aug 1;44(4):361-8 [PMID: 11500853]
  29. Phys Chem Chem Phys. 2007 Mar 21;9(11):1370-85 [PMID: 17347710]
  30. Macromol Rapid Commun. 2015 Feb;36(3):278-85 [PMID: 25420749]
  31. Nature. 1997 Aug 28;388(6645):882-7 [PMID: 9278050]
  32. J Hazard Mater. 2014 Jul 15;276:52-7 [PMID: 24862468]
  33. Polymers (Basel). 2020 May 29;12(6): [PMID: 32486091]
  34. Nat Commun. 2012 Feb 28;3:705 [PMID: 22426226]
  35. Plant Cell Rep. 2011 Jan;30(1):101-12 [PMID: 21082183]
  36. Sci Rep. 2019 Oct 4;9(1):14352 [PMID: 31586119]
  37. Plast Reconstr Surg. 2006 Jun;117(7 Suppl):35S-41S [PMID: 16799373]
  38. Adv Colloid Interface Sci. 2014 Mar;205:156-76 [PMID: 24011696]
  39. Biochem J. 2009 Mar 15;418(3):615-24 [PMID: 19032148]
  40. Nucleic Acids Res. 2011 Sep 1;39(16):7348-60 [PMID: 21646334]
  41. Methods Mol Biol. 2004;261:35-54 [PMID: 15064448]
  42. Immunol Lett. 2003 Sep 8;88(3):199-210 [PMID: 12941479]

MeSH Term

Fluorescent Dyes
Kinetics
Peptides
Polymers
Substrate Specificity
Trypsin
Water

Chemicals

Fluorescent Dyes
Peptides
Polymers
Water
Trypsin

Word Cloud

Created with Highcharts 10.0.0activitysubstratecommercialpolymerfluorescentpeptidestabilitystable5%trypsintimeenzymeweeksfacedpreparationfullywater-solublelong-termenvironmentalsolution35 weeksaccordinglyresultsuseprobedeterminingenzymesachievedgoalpreparingco-polymerN-vinyl-2-pyrrolidone99moldetermination havingvinylicgroup0measuredwatersolutionscontrastedZ-L-Arg-7-amido-4-methylcoumarinhydrochloridemonomericderivativepreparedad-hocInitiallysensory7453 ± 172 nmol/min/mg2044 ± 065 nmol/min/mgformermaintainedalonglatterdeepdecayzerothree'protection'effectexertedchainstudiedsolvationstudiesUV-Visspectroscopysteady-state&resolvedfluorescencethermogravimetryisothermaltitrationcalorimetryrolepolymericchainsprotectiveenvironmentimprovingefficiencyfluorogenicsubstrates

Similar Articles

Cited By