Eco-Friendly Synthesized PVA/Chitosan/Oxalic Acid Nanocomposite Hydrogels Embedding Silver Nanoparticles as Antibacterial Materials.

Irina Popescu, Marieta Constantin, Irina M Pelin, Dana M Suflet, Daniela L Ichim, Oana M Daraba, Gheorghe Fundueanu
Author Information
  1. Irina Popescu: "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania.
  2. Marieta Constantin: "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania. ORCID
  3. Irina M Pelin: "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania.
  4. Dana M Suflet: "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania.
  5. Daniela L Ichim: Faculty of Medical Dentistry, Apollonia University of Iasi, 700511 Iasi, Romania.
  6. Oana M Daraba: Faculty of Medical Dentistry, Apollonia University of Iasi, 700511 Iasi, Romania.
  7. Gheorghe Fundueanu: "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania.

Abstract

PVA/chitosan (PVA/CS) composite hydrogels incorporating silver nanoparticles (AgNPs) were prepared by double-cross-linked procedures: freeze−thawing and electrostatic interactions. Oxalic acid (OA) was used both for solubilization and ionic cross-linking of CS. AgNPs covered by CS (CS-AgNPs) with an average diameter of 9 nm and 18% silver were obtained in the presence of CS, acting as reducing agent and particle stabilizer. The increase of the number of freeze−thaw cycles, as well as of the PVA:CS and OA:CS ratios, resulted in an increase of the gel fraction and elastic modulus. Practically, the elastic modulus of the hydrogels increased from 3.5 kPa in the absence of OA to 11.6 kPa at a 1:1 OA:CS weight ratio, proving that OA was involved in physical cross-linking. The physicochemical properties were not altered by the addition of CS-AgNPs in low concentration; however, concentrations higher than 3% resulted in low gel fraction and elastic modulus. The amount of silver released from the composite hydrogels is very low (<0.4%), showing that AgNPs were well trapped within the polymeric matrix. The composite hydrogels displayed antimicrobial activity against S. aureus, K. pneumoniae or P. gingivalis. The low cytotoxicity and the antibacterial efficacy of hydrogels recommend them for wound and periodontitis treatment.

Keywords

References

  1. Carbohydr Polym. 2022 Feb 15;278:119003 [PMID: 34973803]
  2. Sci Rep. 2021 May 28;11(1):11312 [PMID: 34050228]
  3. Mater Sci Eng C Mater Biol Appl. 2017 Jul 1;76:73-80 [PMID: 28482584]
  4. Int J Pharm. 2004 Mar 1;271(1-2):241-9 [PMID: 15129991]
  5. Polymers (Basel). 2021 Dec 25;14(1): [PMID: 35012093]
  6. Carbohydr Polym. 2019 Nov 15;224:115157 [PMID: 31472832]
  7. Nanotechnology. 2011 Apr 1;22(13):135101 [PMID: 21343644]
  8. J Mater Sci Mater Med. 1999 Jul;10(7):431-5 [PMID: 15348129]
  9. Nanotechnology. 2008 Jan 9;19(1):015603 [PMID: 21730538]
  10. Int J Biol Macromol. 2019 Sep 15;137:878-885 [PMID: 31284002]
  11. J Conserv Dent. 2017 Nov-Dec;20(6):398-404 [PMID: 29430090]
  12. Gels. 2022 Feb 24;8(3): [PMID: 35323256]
  13. Colloids Surf B Biointerfaces. 2008 Mar 15;62(1):136-42 [PMID: 17983734]
  14. Biomed J. 2015 Jan-Feb;38(1):77-83 [PMID: 25179709]
  15. Analyst. 2014 Oct 7;139(19):4855-61 [PMID: 25096538]
  16. Toxicol Lett. 2012 Feb 5;208(3):286-92 [PMID: 22101214]
  17. Int J Biol Macromol. 2018 Jul 15;114:1203-1215 [PMID: 29634965]
  18. Polymers (Basel). 2017 Oct 04;9(10): [PMID: 30965789]
  19. Biomater Sci. 2020 Sep 7;8(17):4665-4691 [PMID: 32760957]
  20. Phys Chem Chem Phys. 2009 Dec 21;11(47):11258-63 [PMID: 20024394]
  21. Carbohydr Polym. 2018 Sep 1;195:63-70 [PMID: 29805020]
  22. Pharmaceutics. 2021 Sep 13;13(9): [PMID: 34575536]
  23. J Burn Care Res. 2021 Aug 4;42(4):785-793 [PMID: 33313805]
  24. J Int Acad Periodontol. 2015 Jul;17(3):66-76 [PMID: 26373223]
  25. ACS Nano. 2007 Dec;1(5):429-39 [PMID: 19206664]
  26. Int J Pharm. 2010 Jun 15;392(1-2):232-40 [PMID: 20230884]
  27. Gels. 2015 Aug 28;1(1):117-134 [PMID: 30674169]
  28. Carbohydr Polym. 2018 Nov 1;199:641-648 [PMID: 30143172]
  29. J Agric Food Chem. 2008 Oct 8;56(19):9015-21 [PMID: 18783240]
  30. Int J Biol Macromol. 2005 Nov 15;37(3):134-42 [PMID: 16257048]
  31. Int J Biol Macromol. 2018 Nov;119:402-412 [PMID: 30030078]
  32. Carbohydr Polym. 2018 Sep 1;195:476-485 [PMID: 29805002]
  33. Int J Nanomedicine. 2017 Jan 23;12:759-777 [PMID: 28176951]
  34. Ultrason Sonochem. 2020 Jan;60:104797 [PMID: 31546086]
  35. Front Bioeng Biotechnol. 2021 Feb 18;9:650598 [PMID: 33681176]

Grants

  1. PN-III-P2-2.1-PED-2019-1780/Ministry of Research, Innovation and Digitization, CNCS/CCCDI - UEFISCDI

Word Cloud

Created with Highcharts 10.0.0hydrogelssilverlowcompositeAgNPsOACSelasticmodulusPVA/chitosannanoparticlesacidcross-linkingCS-AgNPsincreasewellOA:CSresultedgelfractionkPaantibacterialPVA/CSincorporatingprepareddouble-cross-linkedprocedures:freeze−thawingelectrostaticinteractionsOxalicusedsolubilizationioniccoveredaveragediameter9nm18%obtainedpresenceactingreducingagentparticlestabilizernumberfreeze−thawcyclesPVA:CSratiosPracticallyincreased35absence1161:1weightratioprovinginvolvedphysicalphysicochemicalpropertiesalteredadditionconcentrationhoweverconcentrationshigher3%amountreleased<04%showingtrappedwithinpolymericmatrixdisplayedantimicrobialactivitySaureusKpneumoniaePgingivaliscytotoxicityefficacyrecommendwoundperiodontitistreatmentEco-FriendlySynthesizedPVA/Chitosan/OxalicAcidNanocompositeHydrogelsEmbeddingSilverNanoparticlesAntibacterialMaterialseco-friendlyoxalic

Similar Articles

Cited By