A highly attenuated Vesiculovax vaccine rapidly protects nonhuman primates against lethal Marburg virus challenge.

Courtney Woolsey, Robert W Cross, Krystle N Agans, Viktoriya Borisevich, Daniel J Deer, Joan B Geisbert, Cheryl Gerardi, Theresa E Latham, Karla A Fenton, Michael A Egan, John H Eldridge, Thomas W Geisbert, Demetrius Matassov
Author Information
  1. Courtney Woolsey: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America.
  2. Robert W Cross: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America.
  3. Krystle N Agans: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America.
  4. Viktoriya Borisevich: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America.
  5. Daniel J Deer: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America.
  6. Joan B Geisbert: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America.
  7. Cheryl Gerardi: Department of Viral Vaccine Development, Auro Vaccines, Pearl River, New York, United States of America.
  8. Theresa E Latham: Department of Viral Vaccine Development, Auro Vaccines, Pearl River, New York, United States of America.
  9. Karla A Fenton: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America.
  10. Michael A Egan: Department of Immunology, Auro Vaccines, Pearl River, New York, United States of America.
  11. John H Eldridge: Department of Immunology, Auro Vaccines, Pearl River, New York, United States of America.
  12. Thomas W Geisbert: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America. ORCID
  13. Demetrius Matassov: Department of Viral Vaccine Development, Auro Vaccines, Pearl River, New York, United States of America.

Abstract

BACKGROUND: Marburg virus (MARV), an Ebola-like virus, remains an eminent threat to public health as demonstrated by its high associated mortality rate (23-90%) and recent emergence in West Africa for the first time. Although a recombinant vesicular stomatitis virus (rVSV)-based vaccine (Ervebo) is licensed for Ebola virus disease (EVD), no approved countermeasures exist against MARV. Results from clinical trials indicate Ervebo prevents EVD in 97.5-100% of vaccinees 10 days onwards post-immunization.
METHODOLOGY/FINDINGS: Given the rapid immunogenicity of the Ervebo platform against EVD, we tested whether a similar, but highly attenuated, rVSV-based Vesiculovax vector expressing the glycoprotein (GP) of MARV (rVSV-N4CT1-MARV-GP) could provide swift protection against Marburg virus disease (MVD). Here, groups of cynomolgus monkeys were vaccinated 7, 5, or 3 days before exposure to a lethal dose of MARV (Angola variant). All subjects (100%) immunized one week prior to challenge survived; 80% and 20% of subjects survived when vaccinated 5- and 3-days pre-exposure, respectively. Lethality was associated with higher viral load and sustained innate immunity transcriptional signatures, whereas survival correlated with development of MARV GP-specific antibodies and early expression of predicted NK cell-, B-cell-, and cytotoxic T-cell-type quantities.
CONCLUSIONS/SIGNIFICANCE: These results emphasize the utility of Vesiculovax vaccines for MVD outbreak management. The highly attenuated nature of rVSV-N4CT1 vaccines, which are clinically safe in humans, may be preferable to vaccines based on the same platform as Ervebo (rVSV "delta G" platform), which in some trial participants induced vaccine-related adverse events in association with viral replication including arthralgia/arthritis, dermatitis, and cutaneous vasculitis.

References

  1. MMWR Recomm Rep. 2021 Jan 08;70(1):1-12 [PMID: 33417593]
  2. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  3. PLoS One. 2014 Apr 23;9(4):e94355 [PMID: 24759889]
  4. PLoS One. 2007 Aug 22;2(8):e764 [PMID: 17712412]
  5. Lancet. 2017 Feb 4;389(10068):505-518 [PMID: 28017403]
  6. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  7. Viral Immunol. 2015 Feb;28(1):51-61 [PMID: 25494457]
  8. Virology. 2011 Mar 15;411(2):362-73 [PMID: 21292294]
  9. J Infect Dis. 2015 Oct 1;212 Suppl 2:S384-8 [PMID: 25957964]
  10. Nucleic Acids Res. 2012 Dec;40(22):11189-201 [PMID: 23066108]
  11. Nat Biotechnol. 2011 Jan;29(1):24-6 [PMID: 21221095]
  12. Lancet. 2006 Apr 29;367(9520):1399-404 [PMID: 16650649]
  13. Lancet Infect Dis. 2015 Oct;15(10):1156-1166 [PMID: 26248510]
  14. Curr Protoc Bioinformatics. 2016 Jun 20;54:1.30.1-1.30.33 [PMID: 27322403]
  15. J Infect Dis. 2011 Nov;204 Suppl 3:S1075-81 [PMID: 21987744]
  16. Nature. 2015 Apr 30;520(7549):688-691 [PMID: 25853476]
  17. Nat Commun. 2020 Jan 24;11(1):510 [PMID: 31980636]
  18. PLoS Pathog. 2017 Jul 14;13(7):e1006506 [PMID: 28708886]
  19. Lancet Infect Dis. 2020 Apr;20(4):455-466 [PMID: 31952923]
  20. J Infect Dis. 2018 Nov 22;218(suppl_5):S582-S587 [PMID: 29939296]
  21. Semin Immunol. 2018 Oct;39:65-72 [PMID: 30041831]
  22. Immunity. 2017 Jun 20;46(6):983-991.e4 [PMID: 28623086]
  23. Lancet Infect Dis. 2018 Jul;18(7):738-748 [PMID: 29627147]
  24. J Infect Dis. 2015 Oct 1;212 Suppl 2:S91-7 [PMID: 26063223]
  25. PLoS Pathog. 2012;8(10):e1002877 [PMID: 23055920]
  26. N Engl J Med. 2016 Apr 28;374(17):1647-60 [PMID: 25830326]
  27. J Virol. 2009 Jul;83(14):7296-304 [PMID: 19386702]
  28. J Virol. 2006 Jul;80(13):6497-516 [PMID: 16775337]
  29. EBioMedicine. 2017 May;19:107-118 [PMID: 28434944]
  30. J Infect Dis. 2021 Apr 8;223(7):1171-1182 [PMID: 31821493]
  31. Sci Rep. 2020 Feb 20;10(1):3071 [PMID: 32080323]
  32. J Virol. 2015 Oct;89(19):9865-74 [PMID: 26202234]
  33. PLoS Pathog. 2021 Dec 9;17(12):e1010078 [PMID: 34882741]
  34. Cell. 2020 Nov 25;183(5):1383-1401.e19 [PMID: 33159858]
  35. J Virol. 2010 Oct;84(19):10386-94 [PMID: 20660192]
  36. J Infect Dis. 2007 Nov 15;196 Suppl 2:S372-81 [PMID: 17940973]
  37. J Virol. 2010 May;84(10):5140-7 [PMID: 20219911]
  38. J Infect Dis. 2015 Oct 1;212 Suppl 2:S258-70 [PMID: 26092858]
  39. Sci Rep. 2016 Jun 21;6:27944 [PMID: 27323685]
  40. J Virol. 2018 Jan 17;92(3): [PMID: 29142131]
  41. Cell Rep. 2017 Aug 29;20(9):2251-2261 [PMID: 28854372]
  42. J Virol. 1989 Sep;63(9):3569-78 [PMID: 2547986]
  43. J Virol. 1999 May;73(5):3723-32 [PMID: 10196265]
  44. PLoS Negl Trop Dis. 2010 Oct 05;4(10): [PMID: 20957152]
  45. Nat Rev Immunol. 2007 Jul;7(7):556-67 [PMID: 17589545]
  46. NPJ Vaccines. 2020 Apr 14;5(1):32 [PMID: 32337075]
  47. J Infect Dis. 2014 Aug 15;210(4):558-66 [PMID: 24526742]
  48. J Virol. 2006 Oct;80(19):9659-66 [PMID: 16973570]
  49. mBio. 2021 Aug 31;12(4):e0151721 [PMID: 34372693]
  50. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3501-6 [PMID: 9520395]
  51. Genome Res. 2009 Jun;19(6):1117-23 [PMID: 19251739]
  52. J Infect Dis. 2015 Oct 1;212 Suppl 2:S443-51 [PMID: 26109675]
  53. Nat Rev Immunol. 2013 Nov;13(11):777-89 [PMID: 24113868]
  54. Front Immunol. 2021 Oct 27;12:774026 [PMID: 34777392]
  55. Emerg Infect Dis. 2010 Jul;16(7):1119-22 [PMID: 20587184]
  56. Nature. 2016 May 5;533(7601):100-4 [PMID: 27147028]
  57. Immunology. 2005 Jun;115(2):206-14 [PMID: 15885126]

Grants

  1. U19 AI142785/NIAID NIH HHS
  2. UC7 AI094660/NIAID NIH HHS

MeSH Term

Animals
Antibodies, Viral
Ebolavirus
Glycoproteins
Hemorrhagic Fever, Ebola
Humans
Macaca fascicularis
Marburg Virus Disease
Marburgvirus
Vaccines, Attenuated
Vesiculovirus
Viral Vaccines

Chemicals

Antibodies, Viral
Glycoproteins
Vaccines, Attenuated
Viral Vaccines

Word Cloud

Created with Highcharts 10.0.0virusMARVErveboMarburgEVDplatformhighlyattenuatedVesiculovaxvaccinesassociatedrVSVvaccinediseasedaysMVDvaccinatedlethalsubjectschallengesurvivedviralBACKGROUND:Ebola-likeremainseminentthreatpublichealthdemonstratedhighmortalityrate23-90%recentemergenceWestAfricafirsttimeAlthoughrecombinantvesicularstomatitis-basedlicensedEbolaapprovedcountermeasuresexistResultsclinicaltrialsindicateprevents975-100%vaccinees10onwardspost-immunizationMETHODOLOGY/FINDINGS:GivenrapidimmunogenicitytestedwhethersimilarrVSV-basedvectorexpressingglycoproteinGPrVSV-N4CT1-MARV-GPprovideswiftprotectiongroupscynomolgusmonkeys753exposuredoseAngolavariant100%immunizedoneweekprior80%20%5-3-dayspre-exposurerespectivelyLethalityhigherloadsustainedinnateimmunitytranscriptionalsignatureswhereassurvivalcorrelateddevelopmentGP-specificantibodiesearlyexpressionpredictedNKcell-B-cell-cytotoxicT-cell-typequantitiesCONCLUSIONS/SIGNIFICANCE:resultsemphasizeutilityoutbreakmanagementnaturerVSV-N4CT1clinicallysafehumansmaypreferablebased"deltaG"trialparticipantsinducedvaccine-relatedadverseeventsassociationreplicationincludingarthralgia/arthritisdermatitiscutaneousvasculitisrapidlyprotectsnonhumanprimates

Similar Articles

Cited By (25)