Grand Canonical Ensembles of Sparse Networks and Bayesian Inference.

Ginestra Bianconi
Author Information
  1. Ginestra Bianconi: School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK. ORCID

Abstract

Maximum entropy network ensembles have been very successful in modelling sparse network topologies and in solving challenging inference problems. However the sparse maximum entropy network models proposed so far have fixed number of nodes and are typically not exchangeable. Here we consider hierarchical models for exchangeable networks in the sparse limit, i.e., with the total number of links scaling linearly with the total number of nodes. The approach is grand canonical, i.e., the number of nodes of the network is not fixed a priori: it is finite but can be arbitrarily large. In this way the grand canonical network ensembles circumvent the difficulties in treating infinite sparse exchangeable networks which according to the Aldous-Hoover theorem must vanish. The approach can treat networks with given degree distribution or networks with given distribution of latent variables. When only a subgraph induced by a subset of nodes is known, this model allows a Bayesian estimation of the network size and the degree sequence (or the sequence of latent variables) of the entire network which can be used for network reconstruction.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15879-82 [PMID: 12466502]
  2. Phys Rev E. 2020 Nov;102(5-1):052304 [PMID: 33327131]
  3. PLoS One. 2010 Apr 08;5(4):e10012 [PMID: 20386694]
  4. Nat Commun. 2015 Oct 20;6:8627 [PMID: 26482121]
  5. Phys Rev E. 2022 Mar;105(3-1):034310 [PMID: 35428066]
  6. J R Stat Soc Series B Stat Methodol. 2017 Nov;79(5):1295-1366 [PMID: 29200934]
  7. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 2):045102 [PMID: 19905379]
  8. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Mar;79(3 Pt 2):036114 [PMID: 19392025]
  9. Phys Rev E. 2016 Jun;93(6):062311 [PMID: 27415284]
  10. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 2):036106 [PMID: 21230138]
  11. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Dec;70(6 Pt 2):066117 [PMID: 15697444]
  12. Phys Rev E. 2019 Mar;99(3-1):030301 [PMID: 30999479]
  13. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 May;85(5 Pt 2):056122 [PMID: 23004836]
  14. Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11433-8 [PMID: 19571013]
  15. J Mach Learn Res. 2008 Sep;9:1981-2014 [PMID: 21701698]
  16. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 1):011116 [PMID: 20866574]
  17. Phys Rev Lett. 2002 Dec 16;89(25):258702 [PMID: 12484927]
  18. Science. 1999 Oct 15;286(5439):509-12 [PMID: 10521342]
  19. Phys Rev E. 2022 Nov;106(5-1):054308 [PMID: 36559397]
  20. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jul;78(1 Pt 2):016114 [PMID: 18764027]
  21. Phys Rev E. 2017 Aug;96(2-1):022306 [PMID: 28950577]
  22. Entropy (Basel). 2021 Apr 21;23(5): [PMID: 33919107]

Word Cloud

Created with Highcharts 10.0.0networksparsenumbernodesnetworksensemblesmodelsexchangeablecanBayesianentropyinferencefixedhierarchicalietotalapproachgrandcanonicalgivendegreedistributionlatentvariablessequenceMaximumsuccessfulmodellingtopologiessolvingchallengingproblemsHowevermaximumproposedfartypicallyconsiderlimitlinksscalinglinearlypriori:finitearbitrarilylargewaycircumventdifficultiestreatinginfiniteaccordingAldous-HoovertheoremmustvanishtreatsubgraphinducedsubsetknownmodelallowsestimationsizeentireusedreconstructionGrandCanonicalEnsemblesSparseNetworksInference

Similar Articles

Cited By

No available data.