Innovative Antibiofilm Smart Surface against for Water Systems.
Simona Filice, Emanuele Luigi Sciuto, Silvia Scalese, Giuseppina Faro, Sebania Libertino, Domenico Corso, Rosario Manuel Timpanaro, Pasqualina Laganà, Maria Anna Coniglio
Author Information
Simona Filice: Istituto per la Microelettronica e Microsistemi-Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada 5, 95121 Catania, Italy. ORCID
Emanuele Luigi Sciuto: Azienda Ospedaliero Universitaria Policlinico "G. Rodolico-San Marco", Via S. Sofia 78, 95123 Catania, Italy. ORCID
Silvia Scalese: Istituto per la Microelettronica e Microsistemi-Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada 5, 95121 Catania, Italy. ORCID
Giuseppina Faro: Azienda Sanitaria Provinciale di Catania, Via S. Maria La Grande 5, 95124 Catania, Italy.
Sebania Libertino: Istituto per la Microelettronica e Microsistemi-Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada 5, 95121 Catania, Italy. ORCID
Domenico Corso: Istituto per la Microelettronica e Microsistemi-Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada 5, 95121 Catania, Italy.
Rosario Manuel Timpanaro: Azienda Ospedaliero Universitaria Policlinico "G. Rodolico-San Marco", Via S. Sofia 78, 95123 Catania, Italy.
Pasqualina Laganà: Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Torre Biologica 3p, AOU 'G. Martino', University of Messina, Via C. Valeria, S.N.C., 98125 Messina, Italy. ORCID
Maria Anna Coniglio: Istituto per la Microelettronica e Microsistemi-Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada 5, 95121 Catania, Italy. ORCID
contamination of water systems is a crucial issue for public health. The pathogen is able to persist in water as free-living planktonic bacteria or to grow within biofilms that adhere to and clog filters and pipes in a water system, reducing its lifespan and, in the case of hospital buildings, increasing the risk of nosocomial infections. The implementation of water management is considered to be the main prevention measure and can be achieved from the optimization of water system architecture, notably introducing new materials and strategies to contrast biofilm proliferation and so prolong the water system functionality. In this research, we propose a new smart surface against biofilm formation. This is based on an innovative type of coating consisting of a sulfonated pentablock copolymer (s-PBC, commercially named Nexar™) deposited on top of a polypropylene (PP) coupon in a sandwich filter model. The covering of PP with s-PBC results in a more hydrophilic, acid, and negatively charged surface that induces microbial physiological inhibition thereby preventing adhesion and/or proliferation attempts of prior to the biofilm formation. The antibiofilm property has been investigated by a Zone of Inhibition test and an in vitro biofilm formation analysis. Filtration tests have been performed as representative of possible applications for s-PBC coating. Results are reported and discussed.