Modeling spatiotemporal abundance and movement dynamics using an integrated spatial capture-recapture movement model.

Nathan J Hostetter, Eric V Regehr, Ryan R Wilson, J Andrew Royle, Sarah J Converse
Author Information
  1. Nathan J Hostetter: Washington Cooperative Fish and Wildlife Research Unit, School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA. ORCID
  2. Eric V Regehr: Applied Physics Laboratory, Polar Science Center, University of Washington, Seattle, Washington, USA. ORCID
  3. Ryan R Wilson: Marine Mammals Management, United States Fish and Wildlife Service, Anchorage, Alaska, USA. ORCID
  4. J Andrew Royle: United States Geological Survey, Eastern Ecological Science Center, Laurel, Maryland, USA.
  5. Sarah J Converse: United States Geological Survey, Washington Cooperative Fish and Wildlife Research Unit, School of Environmental and Forest Sciences and School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA. ORCID

Abstract

Animal movement is a fundamental ecological process affecting the survival and reproduction of individuals, the structure of populations, and the dynamics of communities. Methods to quantify animal movement and spatiotemporal abundances, however, are generally separate and therefore omit linkages between individual-level and population-level processes. We describe an integrated spatial capture-recapture (SCR) movement model to jointly estimate (1) the number and distribution of individuals in a defined spatial region and (2) movement of those individuals through time. We applied our model to a study of polar bears (Ursus maritimus) in a 28,125 km survey area of the eastern Chukchi Sea, USA in 2015 that incorporated capture-recapture and telemetry data. In simulation studies, the model provided unbiased estimates of movement, abundance, and detection parameters using a bivariate normal random walk and correlated random walk movement process. Our case study provided detailed evidence of directional movement persistence for both male and female bears, where individuals regularly traversed areas larger than the survey area during the 36-day study period. Scaling from individual- to population-level inferences, we found that densities varied from <0.75 bears/625 km grid cell/day in nearshore cells to 1.6-2.5 bears/grid cell/day for cells surrounded by sea ice. Daily abundance estimates ranged from 53 to 69 bears, with no trend across days. The cumulative number of unique bears that used the survey area increased through time due to movements into and out of the area, resulting in an estimated 171 individuals using the survey area during the study (95% credible interval 124-250). Abundance estimates were similar to a previous multiyear integrated population model using capture-recapture and telemetry data (2008-2016; Regehr et al., Scientific Reports 8:16780, 2018). Overall, the SCR-movement model successfully quantified both individual- and population-level space use, including the effects of landscape characteristics on movement, abundance, and detection, while linking the movement and abundance processes to directly estimate density within a prescribed spatial region and temporal period. Integrated SCR-movement models provide a generalizable approach to incorporate greater movement realism into population dynamics and link movement to emergent properties including spatiotemporal densities and abundances.

Keywords

Associated Data

Dryad | 10.5061/dryad.pk0p2ngq7

References

  1. Ecology. 2022 Oct;103(10):e3473 [PMID: 34270790]
  2. Ecology. 2022 Oct;103(10):e3772 [PMID: 35633152]
  3. Proc Biol Sci. 2012 Dec 05;280(1752):20122371 [PMID: 23222446]
  4. Ecology. 2019 Feb;100(2):e02580 [PMID: 30601582]
  5. Sci Rep. 2018 Nov 14;8(1):16780 [PMID: 30429493]
  6. Ecol Appl. 2016 Jul;26(5):1302-1320 [PMID: 27755745]
  7. Proc Biol Sci. 2005 May 7;272(1566):913-8 [PMID: 16024345]
  8. PLoS One. 2021 May 6;16(5):e0251130 [PMID: 33956835]
  9. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19052-9 [PMID: 19060196]
  10. Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30531-30538 [PMID: 33199605]
  11. Ecology. 2022 Oct;103(10):e3771 [PMID: 35638187]
  12. PLoS One. 2015 Nov 18;10(11):e0142213 [PMID: 26580809]
  13. Philos Trans R Soc Lond B Biol Sci. 2010 Jul 27;365(1550):2289-301 [PMID: 20566505]
  14. Proc Biol Sci. 2016 Aug 17;283(1836): [PMID: 27534959]
  15. Biometrics. 2019 Dec;75(4):1345-1355 [PMID: 31045249]
  16. Science. 2015 Jun 12;348(6240):aaa2478 [PMID: 26068858]
  17. Ecol Appl. 2015 Apr;25(3):634-51 [PMID: 26214910]
  18. J Wildl Dis. 1989 Apr;25(2):159-68 [PMID: 2716095]
  19. Trends Ecol Evol. 2016 Jun;31(6):463-475 [PMID: 26979550]

MeSH Term

Animals
Computer Simulation
Female
Ice Cover
Male
Population Dynamics
Reproduction
Ursidae

Word Cloud

Created with Highcharts 10.0.0movementmodelabundanceindividualsspatialcapture-recaptureareastudybearssurveyusingdynamicsspatiotemporalpopulation-levelintegratedtelemetrydataestimatesprocessabundancesprocessesestimate1numberregiontimepolarprovideddetectionrandomwalkperiodindividual-densitiescell/daycellspopulationSCR-movementincludingAnimalfundamentalecologicalaffectingsurvivalreproductionstructurepopulationscommunitiesMethodsquantifyanimalhowevergenerallyseparatethereforeomitlinkagesindividual-leveldescribeSCRjointlydistributiondefined2appliedUrsusmaritimus28125 kmeasternChukchiSeaUSA2015incorporatedsimulationstudiesunbiasedparametersbivariatenormalcorrelatedcasedetailedevidencedirectionalpersistencemalefemaleregularlytraversedareaslarger36-dayScalinginferencesfoundvaried<075bears/625 kmgridnearshore6-25bears/gridsurroundedseaiceDailyranged5369trendacrossdayscumulativeuniqueusedincreasedduemovementsresultingestimated17195%credibleinterval124-250Abundancesimilarpreviousmultiyear2008-2016RegehretalScientificReports8:167802018OverallsuccessfullyquantifiedspaceuseeffectslandscapecharacteristicslinkingdirectlydensitywithinprescribedtemporalIntegratedmodelsprovidegeneralizableapproachincorporategreaterrealismlinkemergentpropertiesModelingintegrationbearsearch-encounter

Similar Articles

Cited By (3)