A framework for reconstructing SARS-CoV-2 transmission dynamics using excess mortality data.

Mahan Ghafari, Oliver J Watson, Ariel Karlinsky, Luca Ferretti, Aris Katzourakis
Author Information
  1. Mahan Ghafari: Department of Zoology, University of Oxford, Oxford, UK. mahan.ghafari@zoo.ox.ac.uk. ORCID
  2. Oliver J Watson: Department of Infectious Disease Epidemiology, Imperial College London, London, UK. ORCID
  3. Ariel Karlinsky: Department of Economics, Hebrew University of Jerusalem, Jerusalem, Israel. ORCID
  4. Luca Ferretti: Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
  5. Aris Katzourakis: Department of Zoology, University of Oxford, Oxford, UK. aris.katzourakis@zoo.ox.ac.uk.

Abstract

The transmission dynamics and burden of SARS-CoV-2 in many regions of the world is still largely unknown due to the scarcity of epidemiological analyses and lack of testing to assess the prevalence of disease. In this work, we develop a quantitative framework based on excess mortality data to reconstruct SARS-CoV-2 transmission dynamics and assess the level of underreporting in infections and deaths. Using weekly all-cause mortality data from Iran, we are able to show a strong agreement between our attack rate estimates and seroprevalence measurements in each province and find significant heterogeneity in the level of exposure across the country with 11 provinces reaching near 100% attack rates. Despite having a young population, our analysis reveals that incorporating limited access to medical services in our model, coupled with undercounting of COVID-19-related deaths, leads to estimates of infection fatality rate in most provinces of Iran that are comparable to high-income countries.

References

  1. JAMA. 2020 Jun 16;323(23):2425-2427 [PMID: 32421144]
  2. Biosaf Health. 2020 Jun;2(2):53-56 [PMID: 38620322]
  3. BMJ. 2021 Oct 12;375:n2239 [PMID: 34642172]
  4. Lancet. 2020 Nov 7;396(10261):1525-1534 [PMID: 32979936]
  5. Nat Hum Behav. 2021 Jul;5(7):947-953 [PMID: 33972767]
  6. Nat Hum Behav. 2020 Aug;4(8):856-865 [PMID: 32737472]
  7. Clin Microbiol Infect. 2021 Nov;27(11):1666-1671 [PMID: 34111585]
  8. Science. 2020 Jul 24;369(6502):413-422 [PMID: 32532802]
  9. Clin Infect Dis. 2013 Dec;57 Suppl 3:S139-70 [PMID: 24200831]
  10. Epidemics. 2021 Sep;36:100472 [PMID: 34153623]
  11. PLoS One. 2020 Nov 11;15(11):e0242128 [PMID: 33175914]
  12. Lancet Microbe. 2021 Dec;2(12):e666-e675 [PMID: 34632431]
  13. JAMA. 2020 Aug 4;324(5):510-513 [PMID: 32609307]
  14. Vaccine. 2021 May 21;39(22):2995-3006 [PMID: 33933313]
  15. BMJ Glob Health. 2020 Sep;5(9): [PMID: 32912856]
  16. Transbound Emerg Dis. 2022 May;69(3):1375-1386 [PMID: 33835709]
  17. Pulmonology. 2021 Mar-Apr;27(2):110-115 [PMID: 32540223]
  18. BMJ Glob Health. 2022 May;7(5): [PMID: 35618305]
  19. Lancet Infect Dis. 2021 May;21(5):602-603 [PMID: 33600759]
  20. Bull World Health Organ. 2021 Jan 01;99(1):19-33F [PMID: 33716331]
  21. Nat Commun. 2021 May 12;12(1):2729 [PMID: 33980836]
  22. Nature. 2021 Feb;590(7844):140-145 [PMID: 33137809]
  23. Proc Biol Sci. 2007 Mar 22;274(1611):833-7 [PMID: 17251095]
  24. Science. 2021 May 28;372(6545): [PMID: 33906968]
  25. Nat Commun. 2021 Jan 12;12(1):323 [PMID: 33436609]
  26. Int J Infect Dis. 2021 Jun;107:101-115 [PMID: 33862214]
  27. N Engl J Med. 2007 Sep 13;357(11):1162-3 [PMID: 17855683]
  28. S Afr Med J. 2021 May 21;111(8):732-740 [PMID: 35227353]
  29. Ann Intern Med. 2022 Apr;175(4):533-540 [PMID: 35099990]
  30. Int J Infect Dis. 2020 Dec;101:138-148 [PMID: 33007452]
  31. Nat Commun. 2021 Apr 22;12(1):2394 [PMID: 33888698]
  32. Science. 2021 Jan 15;371(6526):288-292 [PMID: 33293339]
  33. Iran J Public Health. 2017 Mar;46(3):389-395 [PMID: 28435825]
  34. J Mol Cell Cardiol. 2016 Jul;96:49-62 [PMID: 26611884]
  35. Eur J Epidemiol. 2020 Dec;35(12):1123-1138 [PMID: 33289900]
  36. Lancet. 2021 Mar 27;397(10280):1204-1212 [PMID: 33743221]
  37. Int J Epidemiol. 2021 Jul 9;50(3):753-767 [PMID: 33837401]
  38. PLoS Comput Biol. 2022 Aug 30;18(8):e1010465 [PMID: 36040963]
  39. Emerg Microbes Infect. 2021 Dec;10(1):1751-1759 [PMID: 34396940]
  40. J Travel Med. 2021 Oct 11;28(7): [PMID: 34369565]
  41. Elife. 2021 Jun 30;10: [PMID: 34190045]
  42. Nat Commun. 2020 Sep 17;11(1):4704 [PMID: 32943637]
  43. Lancet Infect Dis. 2021 Apr;21(4):473-481 [PMID: 33338441]
  44. Sci Adv. 2021 Jul 30;7(31): [PMID: 34330709]
  45. Science. 2021 Nov 19;374(6570):995-999 [PMID: 34648303]
  46. Lancet Infect Dis. 2022 Jan;22(1):35-42 [PMID: 34461056]

Grants

  1. MC_PC_19012/Medical Research Council
  2. MR/R015600/1/Medical Research Council
  3. BB/M011224/1/Biotechnology and Biological Sciences Research Council

MeSH Term

COVID-19
Humans
Iran
SARS-CoV-2
Seroepidemiologic Studies

Word Cloud

Created with Highcharts 10.0.0transmissiondynamicsSARS-CoV-2mortalitydataassessframeworkexcessleveldeathsIranattackrateestimatesprovincesburdenmanyregionsworldstilllargelyunknownduescarcityepidemiologicalanalyseslacktestingprevalencediseaseworkdevelopquantitativebasedreconstructunderreportinginfectionsUsingweeklyall-causeableshowstrongagreementseroprevalencemeasurementsprovincefindsignificantheterogeneityexposureacrosscountry11reachingnear100%ratesDespiteyoungpopulationanalysisrevealsincorporatinglimitedaccessmedicalservicesmodelcoupledundercountingCOVID-19-relatedleadsinfectionfatalitycomparablehigh-incomecountriesreconstructingusing

Similar Articles

Cited By (7)