System Complexity in Influenza Infection and Vaccination: Effects upon Excess Winter Mortality.

Rodney P Jones, Andriy Ponomarenko
Author Information
  1. Rodney P Jones: Healthcare Analysis & Forecasting, Wantage OX12 0NE, UK. ORCID
  2. Andriy Ponomarenko: Department of Biophysics, Informatics and Medical Instrumentation, Odessa National Medical University, Valikhovsky Lane 2, 65082 Odessa, Ukraine. ORCID

Abstract

Unexpected outcomes are usually associated with interventions in complex systems. Excess winter mortality (EWM) is a measure of the net effect of all competing forces operating each winter, including influenza(s) and non-influenza pathogens. In this study over 2400 data points from 97 countries are used to look at the net effect of influenza vaccination rates in the elderly aged 65+ against excess winter mortality (EWM) each year from the winter of 1980/81 through to 2019/20. The observed international net effect of influenza vaccination ranges from a 7.8% in EWM estimated at 100% elderly vaccination for the winter of 1989/90 down to a 9.3% in EWM for the winter of 2018/19. The average was only a 0.3% reduction in EWM for a 100% vaccinated elderly population. Such outcomes do not contradict the known protective effect of influenza vaccination against influenza mortality per se-they merely indicate that multiple complex interactions lie behind the observed net effect against all-causes (including all pathogen causes) of winter mortality. This range from net benefit to net disbenefit is proposed to arise from system complexity which includes environmental conditions (weather, solar cycles), the antigenic distance between constantly emerging circulating influenza clades and the influenza vaccine makeup, vaccination timing, pathogen interference, and human immune diversity (including individual history of host-virus, host-antigen interactions and immunosenescence) all interacting to give the observed outcomes each year. We propose that a narrow focus on influenza vaccine effectiveness misses the far wider complexity of winter mortality. Influenza vaccines may need to be formulated in different ways, and perhaps administered over a shorter timeframe to avoid the unanticipated adverse net outcomes seen in around 40% of years.

Keywords

References

  1. Int J Environ Res Public Health. 2021 Feb 23;18(4): [PMID: 33672133]
  2. J Theor Biol. 2021 Feb 7;510:110473 [PMID: 32941914]
  3. Elife. 2017 Jun 27;6: [PMID: 28653624]
  4. Vaccine. 2013 Apr 19;31(17):2165-8 [PMID: 23499601]
  5. Clin Infect Dis. 2021 Dec 14;: [PMID: 34904635]
  6. Front Neurosci. 2022 Jan 20;15:806260 [PMID: 35126045]
  7. Ann Intern Med. 2020 Apr 7;172(7):445-452 [PMID: 32120383]
  8. Arch Intern Med. 2005 Feb 14;165(3):265-72 [PMID: 15710788]
  9. Nat Rev Immunol. 2017 Jan;17(1):21-29 [PMID: 27916977]
  10. BMJ Open. 2022 Mar 7;12(3):e060295 [PMID: 35256449]
  11. Cureus. 2021 Aug 26;13(8):e17449 [PMID: 34589355]
  12. Nat Rev Microbiol. 2021 Dec;19(12):741-742 [PMID: 34584246]
  13. J Infect Dis. 2019 May 5;219(11):1823-1831 [PMID: 30576502]
  14. Med Hypotheses. 2010 May;74(5):831-4 [PMID: 20056531]
  15. Med Hypotheses. 2006;67(5):1016-22 [PMID: 16806734]
  16. Ann Ist Super Sanita. 2018 Jan-Mar;54(1):49-57 [PMID: 29616674]
  17. J Infect Dis. 2017 Aug 15;216(4):415-424 [PMID: 28931240]
  18. Vaccine. 2018 Apr 5;36(15):1958-1964 [PMID: 29525279]
  19. J Psychosom Res. 2018 Jan;104:41-47 [PMID: 29275784]
  20. Blood Adv. 2020 Jul 14;4(13):2967-2978 [PMID: 32609845]
  21. PeerJ. 2020 Mar 09;8:e8626 [PMID: 32195046]
  22. Health Econ Rev. 2019 Mar 11;9(1):9 [PMID: 30859485]
  23. Int J Environ Res Public Health. 2010 Mar;7(3):938-65 [PMID: 20617011]
  24. Eur Phys J Plus. 2021;136(4):439 [PMID: 33936924]
  25. Clin Infect Dis. 2012 Jun;54(12):1778-83 [PMID: 22423139]
  26. Prim Health Care Res Dev. 2011 Oct;12(4):310-21 [PMID: 22284946]
  27. J Immunol. 2017 Feb 15;198(4):1748-1758 [PMID: 28069807]
  28. Environ Sci Pollut Res Int. 2021 Jul;28(28):38074-38084 [PMID: 33725302]
  29. Psychol Aging. 2013 Mar;28(1):128-41 [PMID: 23106152]
  30. Acta Microbiol Immunol Hung. 2010 Jun;57(2):73-86 [PMID: 20587381]
  31. Nat Immunol. 2022 Mar;23(3):411-422 [PMID: 35165446]
  32. Math Med Biol. 2018 Mar 14;35(1):79-119 [PMID: 28339682]
  33. Euro Surveill. 2019 Nov;24(48): [PMID: 31796152]
  34. Int J Environ Res Public Health. 2021 Oct 15;18(20): [PMID: 34682590]
  35. PLoS Pathog. 2018 Feb 15;14(2):e1006770 [PMID: 29447284]
  36. Influenza Other Respir Viruses. 2017 Jan;11(1):41-47 [PMID: 27441401]
  37. Heliyon. 2021 Apr 13;7(4):e06755 [PMID: 33912719]
  38. Virol J. 2019 Jun 26;16(1):85 [PMID: 31242907]
  39. Annu Rev Pathol. 2008;3:499-522 [PMID: 18039138]
  40. Nat Rev Immunol. 2005 Mar;5(3):243-51 [PMID: 15738954]
  41. Eur J Public Health. 2020 Apr 1;30(2):275-280 [PMID: 32060508]
  42. Vaccines (Basel). 2021 Dec 08;9(12): [PMID: 34960198]
  43. Nat Med. 2019 Mar;25(3):487-495 [PMID: 30842675]
  44. Vaccine. 2006 Oct 30;24(42-43):6468-75 [PMID: 16876293]
  45. J Infect Dis. 2012 Sep 1;206(5):628-39 [PMID: 22723641]
  46. Med Microbiol Immunol. 2018 Nov;207(5-6):255-269 [PMID: 29974232]
  47. Nat Commun. 2020 Jun 2;11(1):2741 [PMID: 32488106]
  48. Eur J Clin Microbiol Infect Dis. 2015 Sep;34(9):1839-47 [PMID: 26059041]
  49. J Gerontol. 1988 Nov;43(6):P141-4 [PMID: 3183309]
  50. Proc Natl Acad Sci U S A. 2017 Jul 25;114(30):E6097-E6106 [PMID: 28696306]
  51. Int J Environ Res Public Health. 2022 Mar 14;19(6): [PMID: 35329098]
  52. J Infect Dis. 2012 Sep 1;206(5):625-7 [PMID: 22723644]
  53. J Biol Dyn. 2008 Oct;2(4):357-85 [PMID: 19495424]
  54. Front Med (Lausanne). 2021 Jun 25;8:681469 [PMID: 34249971]
  55. BMC Public Health. 2016 May 26;16:441 [PMID: 27230111]
  56. PLoS One. 2014 Jan 08;9(1):e84839 [PMID: 24416298]
  57. BMC Infect Dis. 2022 Jan 31;22(1):108 [PMID: 35100984]
  58. Gene Rep. 2016 Dec;5:23-29 [PMID: 32289096]
  59. Clin Neurol Neurosurg. 2016 Jul;146:82-9 [PMID: 27161905]
  60. Mayo Clin Proc. 2021 Dec;96(12):3042-3052 [PMID: 34863395]
  61. Bull Math Biol. 2019 Apr;81(4):963-994 [PMID: 30539326]
  62. PLoS Pathog. 2022 Feb 3;18(2):e1010212 [PMID: 35113966]
  63. Appl Environ Microbiol. 2019 Mar 6;85(6): [PMID: 30610079]
  64. BMJ. 2011 Dec 15;343:d7679 [PMID: 22174324]
  65. PLoS Pathog. 2007 Oct 19;3(10):1470-6 [PMID: 17953482]
  66. Medicine (Baltimore). 2020 Jan;99(2):e18504 [PMID: 31914021]
  67. J Theor Biol. 2008 May 7;252(1):155-65 [PMID: 18325538]
  68. J Infect Dis. 2018 Jun 20;218(2):189-196 [PMID: 29361005]
  69. Infect Dis Rep. 2022 Feb 14;14(1):134-141 [PMID: 35200444]
  70. Lancet. 2017 Dec 9;390(10112):2602-2604 [PMID: 28622953]
  71. Am J Epidemiol. 2009 Sep 1;170(5):650-6 [PMID: 19625341]
  72. BMC Infect Dis. 2017 Dec 16;17(1):772 [PMID: 29246199]
  73. Cell Rep. 2020 Jul 21;32(3):107923 [PMID: 32697987]

Word Cloud

Created with Highcharts 10.0.0winterinfluenzanetmortalityvaccinationEWMeffectoutcomesincludingelderlyobservedpathogencomplexExcessyear100%3%interactionscomplexityantigenicdistancevaccineinterferenceimmunediversityInfluenzaUnexpectedusuallyassociatedinterventionssystemsmeasurecompetingforcesoperatingsnon-influenzapathogensstudy2400datapoints97countriesusedlookratesaged65+excess1980/812019/20internationalranges78%estimated1989/9092018/19average0reductionvaccinatedpopulationcontradictknownprotectiveperse-theymerelyindicatemultipleliebehindall-causescausesrangebenefitdisbenefitproposedarisesystemincludesenvironmentalconditionsweathersolarcyclesconstantlyemergingcirculatingcladesmakeuptiminghumanindividualhistoryhost-virushost-antigenimmunosenescenceinteractinggiveproposenarrowfocuseffectivenessmissesfarwidervaccinesmayneedformulateddifferentwaysperhapsadministeredshortertimeframeavoidunanticipatedadverseseenaround40%yearsSystemComplexityInfectionVaccination:EffectsuponWinterMortality

Similar Articles

Cited By