Novel interaction of properdin and coagulation factor XI: Crosstalk between complement and coagulation.

Samantha L Heal, Lewis J Hardy, Clare L Wilson, Majid Ali, Robert A S Ariëns, Richard Foster, Helen Philippou
Author Information
  1. Samantha L Heal: Discovery and Translational Science Department Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds Leeds UK. ORCID
  2. Lewis J Hardy: Discovery and Translational Science Department Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds Leeds UK. ORCID
  3. Clare L Wilson: Discovery and Translational Science Department Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds Leeds UK. ORCID
  4. Majid Ali: Discovery and Translational Science Department Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds Leeds UK. ORCID
  5. Robert A S Ariëns: Discovery and Translational Science Department Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds Leeds UK. ORCID
  6. Richard Foster: School of Chemistry University of Leeds Leeds UK. ORCID
  7. Helen Philippou: Discovery and Translational Science Department Leeds Institute of Cardiovascular and Metabolic Medicine University of Leeds Leeds UK. ORCID

Abstract

Background: Evidence of crosstalk between the complement and coagulation cascades exists, and dysregulation of either pathway can lead to serious thromboinflammatory events. Both the intrinsic pathway of coagulation and the alternative pathway of complement interact with anionic surfaces, such as glycosaminoglycans. Hitherto, there is no evidence for a direct interaction of properdin (factor P [FP]), the only known positive regulator of complement, with coagulation factor XI (FXI) or activated FXI (FXIa).
Objectives: The aim was to investigate crosstalk between FP and the intrinsic pathway and the potential downstream consequences.
Methods: Chromogenic assays were established to characterize autoactivation of FXI in the presence of dextran sulfate (DXS), enzyme kinetics of FXIa, and the downstream effects of FP on intrinsic pathway activity. Substrate specificity changes were investigated using SDS-PAGE and liquid chromatography-mass spectrometry (LC-MS). Surface plasmon resonance (SPR) was used to determine direct binding between FP and FXIa.
Results/Conclusions: We identified a novel interaction of FP with FXIa resulting in functional consequences. FP reduces activity of autoactivated FXIa toward S-2288. FXIa can cleave FP in the presence of DXS, demonstrated using SDS-PAGE, and confirmed by LC-MS. FXIa can cleave factor IX (FIX) and FP in the presence of DXS, determined by SDS-PAGE. DXS alone modulates FXIa activity, and this effect is further modulated by FP. We demonstrate that FXI and FXIa bind to FP with high affinity. Furthermore, FX activation downstream of FXIa cleavage of FIX is modulated by FP. These findings suggest a novel intercommunication between complement and coagulation pathways.

Keywords

References

  1. J Thromb Haemost. 2013 Dec;11(12):2118-27 [PMID: 24152424]
  2. Blood. 2012 May 17;119(20):4762-8 [PMID: 22442348]
  3. PLoS One. 2011;6(5):e20036 [PMID: 21625439]
  4. J Biol Chem. 1991 Apr 25;266(12):7353-8 [PMID: 2019570]
  5. Front Immunol. 2017 Sep 25;8:1188 [PMID: 28993777]
  6. PLoS One. 2016 Apr 05;11(4):e0152968 [PMID: 27046148]
  7. J Biol Chem. 1996 May 31;271(22):12913-8 [PMID: 8662679]
  8. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4862-6 [PMID: 291905]
  9. Blood. 1997 Nov 15;90(10):3819-43 [PMID: 9354649]
  10. Front Immunol. 2013 Jan 17;3:412 [PMID: 23335922]
  11. Mol Immunol. 2009 Feb;46(5):755-60 [PMID: 18954909]
  12. J Immunol. 1989 Jan 1;142(1):202-7 [PMID: 2909614]
  13. Mol Immunol. 2008 Oct;45(16):4057-63 [PMID: 18674818]
  14. J Exp Med. 1981 Mar 1;153(3):665-76 [PMID: 7252410]
  15. J Immunol. 2008 Mar 1;180(5):3313-8 [PMID: 18292556]
  16. Blood. 2011 Jun 16;117(24):6685-93 [PMID: 21508412]
  17. Blood Adv. 2019 Feb 26;3(4):658-669 [PMID: 30808684]
  18. J Infect Dis. 2008 Jul 15;198(2):271-4 [PMID: 18491973]
  19. PLoS One. 2013;8(3):e59372 [PMID: 23555663]
  20. Science. 2014 Mar 14;343(6176):1260-3 [PMID: 24626930]
  21. Thromb Haemost. 2017 Jul 26;117(8):1601-1614 [PMID: 28492700]
  22. J Exp Med. 1975 Oct 1;142(4):856-63 [PMID: 1185108]
  23. Blood. 2016 Sep 29;128(13):1766-76 [PMID: 27338096]
  24. Mol Immunol. 2013 Dec 15;56(3):222-31 [PMID: 23810291]
  25. APMIS. 1990 Oct;98(10):861-74 [PMID: 2147105]
  26. J Biol Chem. 1992 Sep 25;267(27):19691-7 [PMID: 1527088]
  27. Blood. 2020 Feb 20;135(8):558-567 [PMID: 31800958]
  28. Thromb Res. 2018 Jan;161:94-105 [PMID: 29223926]
  29. Thromb Haemost. 2000 May;83(5):709-14 [PMID: 10823267]
  30. J Innate Immun. 2018;10(2):94-105 [PMID: 29237166]
  31. Eur J Clin Invest. 1997 Nov;27(11):922-7 [PMID: 9395788]
  32. Res Pract Thromb Haemost. 2022 May 24;6(4):e12715 [PMID: 35647477]
  33. J Biol Chem. 2002 Feb 15;277(7):4892-9 [PMID: 11733491]
  34. Mol Immunol. 2011 May;48(9-10):1121-7 [PMID: 21397947]
  35. J Immunol. 2021 Apr 15;206(8):1784-1792 [PMID: 33811105]
  36. Science. 1991 Aug 23;253(5022):909-12 [PMID: 1652157]
  37. Science. 1964 Sep 18;145(3638):1310-2 [PMID: 14173416]
  38. Cell Mol Immunol. 2019 Jan;16(1):19-27 [PMID: 29572545]
  39. Nature. 1964 May 2;202:498-9 [PMID: 14167839]
  40. Blood. 2020 Mar 5;135(10):755-765 [PMID: 31971571]
  41. Blood. 2018 Jan 18;131(3):353-364 [PMID: 29158361]
  42. Blood. 2016 Oct 13;128(15):1969-1978 [PMID: 27561317]
  43. J Biol Chem. 2008 Jul 4;283(27):18655-64 [PMID: 18441012]
  44. J Immunol. 1989 Sep 1;143(5):1663-8 [PMID: 2527270]
  45. Blood. 1993 Aug 1;82(3):813-9 [PMID: 8338946]
  46. Blood. 2011 Jan 27;117(4):1340-9 [PMID: 21063021]
  47. J Biol Chem. 2016 Apr 8;291(15):8214-30 [PMID: 26903516]
  48. J Thromb Haemost. 2013 Jul;11(7):1341-52 [PMID: 23659638]
  49. Proc Natl Acad Sci U S A. 1990 May;87(10):3982-6 [PMID: 1692629]
  50. Can Med Assoc J. 1973 May 19;108(10):1291-7 [PMID: 4122234]
  51. Inflamm Res. 2006 May;55(5):179-84 [PMID: 16830104]
  52. J Exp Med. 1980 Mar 1;151(3):501-16 [PMID: 6444659]
  53. J Immunol. 1997 May 1;158(9):4444-51 [PMID: 9127010]
  54. Proc Natl Acad Sci U S A. 2021 Jan 19;118(3): [PMID: 33397811]
  55. Trends Biochem Sci. 2002 Feb;27(2):67-74 [PMID: 11852243]
  56. Arterioscler Thromb Vasc Biol. 2020 Jan;40(1):103-111 [PMID: 31766871]
  57. J Biol Chem. 1999 Sep 3;274(36):25777-84 [PMID: 10464316]
  58. Immunol Rev. 2016 Nov;274(1):9-15 [PMID: 27782327]
  59. Thromb Haemost. 2010 Nov;104(5):886-93 [PMID: 20806108]

Grants

  1. PG/16/6/31941/British Heart Foundation

Word Cloud

Created with Highcharts 10.0.0FPFXIacomplementcoagulationfactorpathwayFXIDXScanintrinsicinteractionproperdindownstreampresenceactivitySDS-PAGEcrosstalkdirectXIconsequencesenzymekineticsspecificityusingLC-MSplasmonresonanceSPRnovelcleaveFIXmodulatedBackground:EvidencecascadesexistsdysregulationeitherleadseriousthromboinflammatoryeventsalternativeinteractanionicsurfacesglycosaminoglycansHithertoevidenceP[FP]knownpositiveregulatoractivatedObjectives:aiminvestigatepotentialMethods:ChromogenicassaysestablishedcharacterizeautoactivationdextransulfateeffectsSubstratechangesinvestigatedliquidchromatography-massspectrometrySurfaceuseddeterminebindingResults/Conclusions:identifiedresultingfunctionalreducesautoactivatedtowardS-2288demonstratedconfirmedIXdeterminedalonemodulateseffectdemonstratebindhighaffinityFurthermoreFXactivationcleavagefindingssuggestintercommunicationpathwaysNovelXI:Crosstalksystempolyanionsubstratesurface

Similar Articles

Cited By