Artificial neural networks enable genome-scale simulations of intracellular signaling.

Avlant Nilsson, Joshua M Peters, Nikolaos Meimetis, Bryan Bryson, Douglas A Lauffenburger
Author Information
  1. Avlant Nilsson: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. ORCID
  2. Joshua M Peters: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. ORCID
  3. Nikolaos Meimetis: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. ORCID
  4. Bryan Bryson: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. ORCID
  5. Douglas A Lauffenburger: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. lauffen@mit.edu. ORCID

Abstract

Mammalian cells adapt their functional state in response to external signals in form of ligands that bind receptors on the cell-surface. Mechanistically, this involves signal-processing through a complex network of molecular interactions that govern transcription factor activity patterns. Computer simulations of the information flow through this network could help predict cellular responses in health and disease. Here we develop a recurrent neural network framework constrained by prior knowledge of the signaling network with ligand-concentrations as input and transcription factor-activity as output. Applied to synthetic data, it predicts unseen test-data (Pearson correlation r = 0.98) and the effects of gene knockouts (r = 0.8). We stimulate macrophages with 59 different ligands, with and without the addition of lipopolysaccharide, and collect transcriptomics data. The framework predicts this data under cross-validation (r = 0.8) and knockout simulations suggest a role for RIPK1 in modulating the lipopolysaccharide response. This work demonstrates the feasibility of genome-scale simulations of intracellular signaling.

References

  1. Nat Rev Genet. 2010 Apr;11(4):297-307 [PMID: 20177425]
  2. Math Biosci. 2017 May;287:105-121 [PMID: 27424950]
  3. Nucleic Acids Res. 2017 Jan 4;45(D1):D158-D169 [PMID: 27899622]
  4. Adv Wound Care (New Rochelle). 2014 Mar 1;3(3):281-290 [PMID: 24669362]
  5. Nat Biotechnol. 2010 Mar;28(3):245-8 [PMID: 20212490]
  6. Nat Commun. 2019 Nov 7;10(1):5072 [PMID: 31699973]
  7. Cell Rep Methods. 2021 Sep 15;1(5):100070 [PMID: 35474668]
  8. Nat Protoc. 2014 Jan;9(1):171-81 [PMID: 24385147]
  9. Proteomics. 2021 Dec;21(23-24):e2000034 [PMID: 34314098]
  10. Nucleic Acids Res. 2013 Jan;41(Database issue):D1228-33 [PMID: 23180781]
  11. Nat Rev Genet. 2015 Mar;16(3):146-58 [PMID: 25645874]
  12. Cell. 2017 Sep 7;170(6):1184-1196.e24 [PMID: 28886385]
  13. FEBS J. 2014 Jan;281(2):473-88 [PMID: 24103070]
  14. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  15. Nat Methods. 2020 Feb;17(2):159-162 [PMID: 31819264]
  16. Cell. 2016 Dec 15;167(7):1853-1866.e17 [PMID: 27984732]
  17. Nat Genet. 2016 Aug;48(8):838-47 [PMID: 27322546]
  18. J Biol Chem. 2001 Dec 21;276(51):47828-33 [PMID: 11591705]
  19. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  20. Nucleic Acids Res. 2019 Jan 8;47(D1):D711-D715 [PMID: 30357387]
  21. Cell Death Dis. 2018 Sep 24;9(10):973 [PMID: 30250197]
  22. Nature. 2020 Sep;585(7825):357-362 [PMID: 32939066]
  23. Biosystems. 2017 Mar - Apr;153-154:6-25 [PMID: 28174135]
  24. N Engl J Med. 2020 Dec 3;383(23):2255-2273 [PMID: 33264547]
  25. Cell. 2017 Nov 30;171(6):1437-1452.e17 [PMID: 29195078]
  26. Nat Methods. 2020 Mar;17(3):261-272 [PMID: 32015543]
  27. Nat Rev Mol Cell Biol. 2006 Mar;7(3):165-76 [PMID: 16482094]
  28. Nat Methods. 2022 May;19(5):547-553 [PMID: 35501385]
  29. J Immunol. 2021 Feb 15;206(4):883-891 [PMID: 33408259]
  30. Nat Rev Immunol. 2018 Oct;18(10):597-598 [PMID: 30078033]
  31. Genome Res. 2019 Aug;29(8):1363-1375 [PMID: 31340985]
  32. Genome Biol. 2020 Aug 3;21(1):190 [PMID: 32746932]
  33. J R Soc Interface. 2017 Jun;14(131): [PMID: 28615495]
  34. Nat Rev Cancer. 2020 Jun;20(6):343-354 [PMID: 32341552]
  35. Wiley Interdiscip Rev Syst Biol Med. 2016 May;8(3):227-41 [PMID: 26990581]
  36. Nucleic Acids Res. 2020 Jan 8;48(D1):D504-D510 [PMID: 31665520]
  37. Cell Syst. 2021 Feb 17;12(2):128-140.e4 [PMID: 33373583]
  38. Bioinformatics. 2020 Jan 15;36(2):594-602 [PMID: 31347657]
  39. Hum Immunol. 2012 May;73(5):439-47 [PMID: 22391342]
  40. Cell. 2020 Aug 20;182(4):872-885.e19 [PMID: 32783915]
  41. Bioinformatics. 2020 Jul 1;36(Suppl_1):i499-i507 [PMID: 32657418]
  42. Biochim Biophys Acta Gene Regul Mech. 2020 Jun;1863(6):194431 [PMID: 31525460]
  43. Immunity. 2014 Feb 20;40(2):274-88 [PMID: 24530056]
  44. Nucleic Acids Res. 1999 Jan 1;27(1):29-34 [PMID: 9847135]
  45. Cell Syst. 2018 Dec 26;7(6):567-579.e6 [PMID: 30503647]
  46. Protein Sci. 2018 Dec;27(12):1984-2009 [PMID: 30267440]
  47. Pac Symp Biocomput. 2019;24:374-385 [PMID: 30963076]
  48. Proc Natl Acad Sci U S A. 2020 May 12;117(19):10294-10304 [PMID: 32341162]
  49. Essays Biochem. 2018 Oct 26;62(4):525-534 [PMID: 30072490]
  50. Oncogene. 2018 Jun;37(24):3183-3199 [PMID: 29540830]
  51. Front Immunol. 2019 Apr 09;10:705 [PMID: 31024544]
  52. Genome Biol. 2007;8(6):R104 [PMID: 17553156]
  53. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082 [PMID: 29126136]
  54. NPJ Syst Biol Appl. 2019 Nov 11;5:40 [PMID: 31728204]
  55. Elife. 2020 Dec 07;9: [PMID: 33284110]
  56. Nat Methods. 2016 Nov 29;13(12):966-967 [PMID: 27898060]
  57. Sci Rep. 2016 Feb 11;6:20772 [PMID: 26865316]
  58. iScience. 2021 Jan 29;24(2):102112 [PMID: 33659877]

Grants

  1. R01 AR073252/NIAMS NIH HHS

MeSH Term

Animals
Ligands
Lipopolysaccharides
Mammals
Neural Networks, Computer
Signal Transduction
Transcription Factors

Chemicals

Ligands
Lipopolysaccharides
Transcription Factors

Word Cloud

Created with Highcharts 10.0.0networksimulationssignalingdatar = 0responseligandstranscriptionneuralframeworkpredicts8lipopolysaccharidegenome-scaleintracellularMammaliancellsadaptfunctionalstateexternalsignalsformbindreceptorscell-surfaceMechanisticallyinvolvessignal-processingcomplexmolecularinteractionsgovernfactoractivitypatternsComputerinformationflowhelppredictcellularresponseshealthdiseasedeveloprecurrentconstrainedpriorknowledgeligand-concentrationsinputfactor-activityoutputAppliedsyntheticunseentest-dataPearsoncorrelation98effectsgeneknockoutsstimulatemacrophages59differentwithoutadditioncollecttranscriptomicscross-validationknockoutsuggestroleRIPK1modulatingworkdemonstratesfeasibilityArtificialnetworksenable

Similar Articles

Cited By (14)