Natural Language Processing for Imaging Protocol Assignment: Machine Learning for Multiclass Classification of Abdominal CT Protocols Using Indication Text Data.

Brian Arun Xavier, Po-Hao Chen
Author Information
  1. Brian Arun Xavier: Imaging Institute, Cleveland Clinic Foundation, 9500 Euclid Ave., P34, Cleveland, OH, 44195, USA. brianxk@gmail.com. ORCID
  2. Po-Hao Chen: Imaging Institute, Cleveland Clinic Foundation, 9500 Euclid Ave., P34, Cleveland, OH, 44195, USA.

Abstract

A correct protocol assignment is critical to high-quality imaging examinations, and its automation can be amenable to natural language processing (NLP). Assigning protocols for abdominal imaging CT scans is particularly challenging given the multiple organ specific indications and parameters. We compared conventional machine learning, deep learning, and automated machine learning builder workflows for this multiclass text classification task. A total of 94,501 CT studies performed over 4 years and their assigned protocols were obtained. Text data associated with each study including the ordering provider generated free text study indication and ICD codes were used for NLP analysis and protocol class prediction. The data was classified into one of 11 abdominal CT protocol classes before and after augmentations used to account for imbalances in the class sample sizes. Four machine learning (ML) algorithms, one deep learning algorithm, and an automated machine learning (AutoML) builder were used for the multilabel classification task: Random Forest (RF), Tree Ensemble (TE), Gradient Boosted Tree (GBT), multi-layer perceptron (MLP), Universal Language Model Fine-tuning (ULMFiT), and Google's AutoML builder (Alphabet, Inc., Mountain View, CA), respectively. On the unbalanced dataset, the manually coded algorithms all performed similarly with F1 scores of 0.811 for RF, 0.813 for TE, 0.813 for GBT, 0.828 for MLP, and 0.847 for ULMFiT. The AutoML builder performed better with a F1 score of 0.854. On the balanced dataset, the tree ensemble machine learning algorithm performed the best with an F1 score of 0.803 and a Cohen's kappa of 0.612. AutoML methods took a longer time for completion of NLP model training and evaluation, 4 h and 45 min compared to an average of 51 min for manual methods. Machine learning and natural language processing can be used for the complex multiclass classification task of abdominal imaging CT scan protocol assignment.

Keywords

References

  1. Curr Probl Diagn Radiol. 2017 Jul - Aug;46(4):275-281 [PMID: 28049559]
  2. Acad Radiol. 2015 Sep;22(9):1191-8 [PMID: 26210525]
  3. AJR Am J Roentgenol. 2019 Oct;213(4):W180-W184 [PMID: 31237433]
  4. Acad Radiol. 2020 Jan;27(1):6-12 [PMID: 31537505]
  5. Curr Probl Diagn Radiol. 2016 Mar-Apr;45(2):101-6 [PMID: 26122926]
  6. Clin Radiol. 2018 Aug;73(8):759.e19-759.e25 [PMID: 29853302]
  7. IEEE Trans Pattern Anal Mach Intell. 2019 Jun;41(6):1367-1381 [PMID: 29993438]
  8. J Digit Imaging. 2018 Oct;31(5):604-610 [PMID: 29619578]
  9. J Med Syst. 2021 Sep 4;45(10):91 [PMID: 34480231]
  10. J Digit Imaging. 2018 Apr;31(2):245-251 [PMID: 28924815]
  11. BMC Med Inform Decis Mak. 2019 Jan 7;19(1):1 [PMID: 30616584]
  12. Inf Process Manag. 2021 Jul;58(4):102569 [PMID: 33776192]

MeSH Term

Humans
Natural Language Processing
Machine Learning
Algorithms
Abdomen
Tomography, X-Ray Computed

Word Cloud

Created with Highcharts 10.0.0learning0CTmachineprotocolimagingbuilderperformedusedAutoMLlanguageprocessingNLPabdominalclassificationF1MachineassignmentcannaturalprotocolscompareddeepautomatedmulticlasstexttaskTextdatastudyclassonealgorithmsalgorithmRFTreeTEGBTMLPLanguageULMFiTdataset813scoremethodsNaturalProtocolAbdominalcorrectcriticalhigh-qualityexaminationsautomationamenableAssigningscansparticularlychallenginggivenmultipleorganspecificindicationsparametersconventionalworkflowstotal94501studies4 yearsassignedobtainedassociatedincludingorderingprovidergeneratedfreeindicationICDcodesanalysispredictionclassified11classesaugmentationsaccountimbalancessamplesizesFourMLmultilabeltask:RandomForestEnsembleGradientBoostedmulti-layerperceptronUniversalModelFine-tuning Google'sAlphabetIncMountainViewCArespectivelyunbalancedmanuallycodedsimilarlyscores811828847better854balancedtreeensemblebest803Cohen'skappa612tooklongertimecompletionmodeltrainingevaluation4 h45 minaverage51 minmanualcomplexscanProcessingImagingAssignment:LearningMulticlassClassificationProtocolsUsingIndicationDataDeep

Similar Articles

Cited By