Antiproliferative and apoptotic activity of gemcitabine-lauric acid conjugate on human bladder cancer cells.

Hongxia Wang, Zhiyu Shao, Zhiwen Xu, Binghao Ye, Ming Li, Qiaoqiao Zheng, Xingyuan Ma, Ping Shi
Author Information
  1. Hongxia Wang: State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
  2. Zhiyu Shao: College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
  3. Zhiwen Xu: State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
  4. Binghao Ye: State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
  5. Ming Li: State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
  6. Qiaoqiao Zheng: State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
  7. Xingyuan Ma: State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
  8. Ping Shi: State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.

Abstract

Objectives: Gemcitabine is a first-line drug for the treatment of bladder cancer. One of the most important mechanisms of gemcitabine resistance is the low expression of cellular membrane transporter hENT1. Various derivatives containing fatty acid side chains have been developed in order to facilitate gemcitabine uptake and prolong its retention in cells, such as CP-4126. In this study, the anti-tumor effect and mechanism of a new derivative of gemcitabine named SZY-200 on bladder cancer cells were investigated. SZY-200 was assembled from the gemcitabine-lauric acid conjugate.
Materials and Methods: Antiproliferative activities of SZY-200 and lauric acid were evaluated using CCK-8 assay and clonogenic survival assay. The hENT1 inhibitor NBMPR was employed to determine the role of hENT1 in the apoptotic activity of GEM, CP-4126, and SZY-200. RT-qPCR, flow cytometry, fluorescence microscope, western blotting, and wound healing assay were used to study the mechanisms of SZY-200. The target genes were predicted using the BATMAN-TCM database.
Results: Our data showed that SZY-200 could inhibit the proliferation of bladder cancer cells by inducing cell cycle arrest and apoptosis. The inhibitory effects were comparable to gemcitabine and CP-4126. SZY-200 does not rely on hENT1 to help it enter bladder cancer cells. Also, we found that lauric acid could inhibit the proliferation of bladder cancer cells. SZY-200 could down-regulate the expressions of PPARG and PTGS2 which were related to the occurrence and development of bladder cancer.
Conclusion: SZY-200 has the same or more advantages as CP-4126 and could be an ideal candidate drug for further investigation.

Keywords

References

  1. Drug Resist Updat. 2002 Feb;5(1):19-33 [PMID: 12127861]
  2. Cancer. 2011 Jul 15;117(14):3126-34 [PMID: 21264835]
  3. Am J Clin Nutr. 2000 Oct;72(4):905-11 [PMID: 11010930]
  4. Oncol Lett. 2017 Jul;14(1):681-686 [PMID: 28693221]
  5. Am J Pathol. 2000 Jul;157(1):29-35 [PMID: 10880372]
  6. J Clin Oncol. 2000 Sep;18(17):3068-77 [PMID: 11001674]
  7. Nucleosides Nucleotides Nucleic Acids. 2004 Oct;23(8-9):1329-33 [PMID: 15571253]
  8. Oncol Rep. 2007 May;17(5):1201-5 [PMID: 17390066]
  9. Sci Rep. 2016 Feb 16;6:21146 [PMID: 26879404]
  10. Gastroenterology. 2009 Jan;136(1):187-95 [PMID: 18992248]
  11. Oncol Lett. 2017 Jul;14(1):599-606 [PMID: 28693211]
  12. Cancer Prev Res (Phila). 2013 May;6(5):466-76 [PMID: 23531445]
  13. Invest New Drugs. 2012 Oct;30(5):1908-16 [PMID: 22002019]
  14. Urol Oncol. 2021 Mar;39(3):195.e7-195.e13 [PMID: 33268275]
  15. Cancer Chemother Pharmacol. 2015 Oct;76(4):785-92 [PMID: 26289594]
  16. Clin Cancer Res. 2009 Apr 15;15(8):2913-9 [PMID: 19318496]
  17. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  18. Haematologica. 2006 Jul;91(7):895-902 [PMID: 16818276]
  19. Biomed Pharmacother. 2018 Oct;106:1307-1316 [PMID: 30119201]
  20. Cancer Sci. 2004 Sep;95(9):753-7 [PMID: 15471562]
  21. J Urol. 2002 Oct;168(4 Pt 1):1568-73 [PMID: 12352459]
  22. BMC Cancer. 2005 Aug 18;5:103 [PMID: 16109167]
  23. Cancer Res. 2017 Dec 15;77(24):6987-6998 [PMID: 28923856]
  24. Cancer Res. 1988 Jul 15;48(14):4024-31 [PMID: 3383195]
  25. Int J Pharm. 2018 Dec 1;552(1-2):111-118 [PMID: 30268848]
  26. Clin Cancer Res. 2008 Jun 1;14(11):3477-86 [PMID: 18519780]
  27. Cancer Med. 2020 Nov;9(21):7800-7809 [PMID: 33040478]
  28. BJU Int. 2011 Jul;108(2 Pt 2):E110-6 [PMID: 21166756]
  29. Invest New Drugs. 2011 Jun;29(3):456-66 [PMID: 20066470]
  30. J Cell Mol Med. 2019 May;23(5):3724-3736 [PMID: 30912275]
  31. Ann Nutr Metab. 2020;76(5):297-303 [PMID: 32950986]
  32. Urology. 2013 May;81(5):1109.e1-6 [PMID: 23522297]
  33. Br J Surg. 2017 Mar;104(4):328-336 [PMID: 28199010]
  34. Onco Targets Ther. 2020 Sep 28;13:9543-9558 [PMID: 33061438]
  35. J Toxicol Environ Health A. 2012;75(13-15):788-99 [PMID: 22788366]
  36. PLoS One. 2014 Jan 27;9(1):e87103 [PMID: 24475233]
  37. Gastroenterology. 2009 Apr;136(4):1242-50 [PMID: 19186181]
  38. Exp Biol Med (Maywood). 2010 Jul;235(7):814-24 [PMID: 20558835]
  39. J Biol Chem. 2004 Feb 6;279(6):4490-7 [PMID: 14607828]
  40. J Oleo Sci. 2016 Aug 1;65(8):693-9 [PMID: 27430387]
  41. Br J Haematol. 2009 Jan;144(2):273-5 [PMID: 19036103]
  42. Eur Urol. 2021 Feb;79(2):214-221 [PMID: 32868138]
  43. Cell Death Discov. 2017 Sep 18;3:17063 [PMID: 28924490]

Word Cloud

Created with Highcharts 10.0.0SZY-200bladdercancercellsacidgemcitabinehENT1CP-4126assayGemcitabinedrugmechanismsstudygemcitabine-lauricconjugateAntiproliferativelauricusingapoptoticactivityinhibitproliferationcycleObjectives:first-linetreatmentOneimportantresistancelowexpressioncellularmembranetransporterVariousderivativescontainingfattysidechainsdevelopedorderfacilitateuptakeprolongretentionanti-tumoreffectmechanismnewderivativenamedinvestigatedassembledMaterialsMethods:activitiesevaluatedCCK-8clonogenicsurvivalinhibitorNBMPRemployeddetermineroleGEMRT-qPCRflowcytometryfluorescencemicroscopewesternblottingwoundhealingusedtargetgenespredictedBATMAN-TCMdatabaseResults:datashowedinducingcellarrestapoptosisinhibitoryeffectscomparablerelyhelpenterAlsofounddown-regulateexpressionsPPARGPTGS2relatedoccurrencedevelopmentConclusion:advantagesidealcandidateinvestigationhumanApoptosisCellcheckpointsSLC29A1proteinUrinaryneoplasms

Similar Articles

Cited By