Natural history of infection in rhesus and cynomolgus macaques.

Courtney Woolsey, Alyssa C Fears, Viktoriya Borisevich, Krystle N Agans, Natalie S Dobias, Abhishek N Prasad, Daniel J Deer, Joan B Geisbert, Karla A Fenton, Thomas W Geisbert, Robert W Cross
Author Information
  1. Courtney Woolsey: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA. ORCID
  2. Alyssa C Fears: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA. ORCID
  3. Viktoriya Borisevich: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
  4. Krystle N Agans: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA. ORCID
  5. Natalie S Dobias: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
  6. Abhishek N Prasad: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA. ORCID
  7. Daniel J Deer: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
  8. Joan B Geisbert: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
  9. Karla A Fenton: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA. ORCID
  10. Thomas W Geisbert: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA. ORCID
  11. Robert W Cross: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA. ORCID

Abstract

Due to its high mortality rate and continued re-emergence, Ebolavirus disease (EVD) continues to pose a serious threat to global health. A group of viruses within the genus causes this severe hemorrhagic disease in humans: Ebola virus (EBOV; species ), Sudan virus (SUDV; species ), Bundibugyo virus, and Ta�� Forest virus. EBOV and SUDV are associated with the highest case fatality rates. While the host response to EBOV has been comprehensively examined, limited data exists for SUDV infection. For medical countermeasure testing, well-characterized SUDV nonhuman primate (NHP) models are thus needed. Here, we describe a natural history study in which rhesus (���=���11) and cynomolgus macaques (���=���14) were intramuscularly exposed to a 1000 plaque-forming unit dose of SUDV (Gulu variant). Time-course analyses of various hematological, pathological, serological, coagulation, and transcriptomic findings are reported. SUDV infection was uniformly lethal in cynomolgus macaques (100% mortality), whereas a single rhesus macaque subject (91% mortality) survived to the study endpoint (median time-to-death of ���8.0 and ���8.5 days in cynomolgus and rhesus macaques, respectively). Infected macaques exhibited hallmark features of human EVD. The early stage was typified by viremia, granulocytosis, lymphopenia, albuminemia, thrombocytopenia, and decreased expression of HLA-class transcripts. At mid-to-late disease, animals developed fever and petechial rashes, and expressed high levels of pro-inflammatory mediators, pro-thrombotic factors, and markers indicative of liver and kidney injury. End-stage disease was characterized by shock and multi-organ failure. In summary, macaques recapitulate human SUDV disease, supporting these models for use in the development of vaccines and therapeutics.

Keywords

References

  1. Front Immunol. 2017 Oct 26;8:1372 [PMID: 29123522]
  2. Trop Med Int Health. 2002 Dec;7(12):1068-75 [PMID: 12460399]
  3. Nat Methods. 2015 May;12(5):453-7 [PMID: 25822800]
  4. J Infect Dis. 2011 Nov;204 Suppl 3:S804-9 [PMID: 21987755]
  5. Sci Rep. 2020 Feb 20;10(1):3071 [PMID: 32080323]
  6. J Infect Dis. 2016 Aug 15;214(4):565-9 [PMID: 27354371]
  7. Infect Dis Clin North Am. 2019 Dec;33(4):953-976 [PMID: 31668200]
  8. Lancet. 1990 Mar 3;335(8688):502-5 [PMID: 1968529]
  9. J Clin Invest. 2020 Jan 2;130(1):539-551 [PMID: 31820871]
  10. J Infect Dis. 2015 Oct 1;212 Suppl 2:S101-8 [PMID: 25786916]
  11. JCI Insight. 2022 May 23;7(10): [PMID: 35413016]
  12. Mol Med Rep. 2020 Aug;22(2):1656-1662 [PMID: 32626961]
  13. J Infect Dis. 2016 Oct 15;214(suppl 3):S275-S280 [PMID: 27521367]
  14. N Engl J Med. 2020 May 7;382(19):1832-1842 [PMID: 32441897]
  15. J Virol. 2015 Oct 21;90(1):392-9 [PMID: 26491156]
  16. Cell. 2022 Mar 17;185(6):995-1007.e18 [PMID: 35303429]
  17. Emerg Infect Dis. 2014 Oct;20(10):1683-90 [PMID: 25279581]
  18. Nat Immunol. 2000 Dec;1(6):510-4 [PMID: 11101873]
  19. BMC Bioinformatics. 2015 May 22;16:169 [PMID: 25994840]
  20. mSphere. 2016 Dec 28;1(6): [PMID: 28066813]
  21. J Infect Dis. 2015 Oct 1;212 Suppl 2:S91-7 [PMID: 26063223]
  22. Lancet. 1995 May 20;345(8960):1271-4 [PMID: 7746057]
  23. Cell. 2021 Oct 28;184(22):5593-5607.e18 [PMID: 34715022]
  24. J Infect Dis. 2015 Oct 1;212 Suppl 2:S282-94 [PMID: 25943199]
  25. Int J Biochem Cell Biol. 2005 Aug;37(8):1560-6 [PMID: 15896665]
  26. PLoS Pathog. 2021 Dec 9;17(12):e1010078 [PMID: 34882741]
  27. Cell. 2020 Nov 25;183(5):1383-1401.e19 [PMID: 33159858]
  28. Viruses. 2012 Oct 15;4(10):2115-36 [PMID: 23202456]
  29. Bull World Health Organ. 1978;56(2):247-70 [PMID: 307455]
  30. J Virol. 2018 Jan 17;92(3): [PMID: 29142131]
  31. Lancet. 1977 Mar 12;1(8011):571-3 [PMID: 65662]
  32. Front Genet. 2021 Nov 02;12:774846 [PMID: 34795698]
  33. Emerg Infect Dis. 2019 May;25(5):955-957 [PMID: 31002301]
  34. PLoS Negl Trop Dis. 2010 Oct 05;4(10): [PMID: 20957152]
  35. J Infect Dis. 2007 Nov 15;196 Suppl 2:S364-71 [PMID: 17940972]
  36. J Infect Dis. 2014 Aug 15;210(4):558-66 [PMID: 24526742]
  37. mBio. 2021 Aug 31;12(4):e0151721 [PMID: 34372693]
  38. Pathogens. 2022 Jun 07;11(6): [PMID: 35745509]
  39. Nat Microbiol. 2018 Oct;3(10):1084-1089 [PMID: 30150734]
  40. Nat Microbiol. 2016 Aug 22;1(10):16142 [PMID: 27670117]
  41. J Infect Dis. 2003 Dec 1;188(11):1618-29 [PMID: 14639531]
  42. Oncotarget. 2017 Jul 11;8(28):46262-46272 [PMID: 28545034]

Grants

  1. U19 AI109711/NIAID NIH HHS
  2. U19 AI142785/NIAID NIH HHS
  3. UC7 AI094660/NIAID NIH HHS

MeSH Term

Animals
Ebolavirus
Hemorrhagic Fever, Ebola
Macaca fascicularis
Macaca mulatta
Uganda

Word Cloud

Created with Highcharts 10.0.0SUDVmacaquesvirusdiseaserhesuscynomolgusmortalityEBOVSudaninfectionmodelshistoryhighEVDEbolaspeciesnonhumannaturalstudy���8humanDueratecontinuedre-emergenceEbolaviruscontinuesposeseriousthreatglobalhealthgroupviruseswithingenuscausesseverehemorrhagichumans:BundibugyoTa��Forestassociatedhighestcasefatalityrateshostresponsecomprehensivelyexaminedlimiteddataexistsmedicalcountermeasuretestingwell-characterizedprimateNHPthusneededdescribe���=���11���=���14intramuscularlyexposed1000plaque-formingunitdoseGuluvariantTime-courseanalysesvarioushematologicalpathologicalserologicalcoagulationtranscriptomicfindingsreporteduniformlylethal100%whereassinglemacaquesubject91%survivedendpointmediantime-to-death05daysrespectivelyInfectedexhibitedhallmarkfeaturesearlystagetypifiedviremiagranulocytosislymphopeniaalbuminemiathrombocytopeniadecreasedexpressionHLA-classtranscriptsmid-to-lateanimalsdevelopedfeverpetechialrashesexpressedlevelspro-inflammatorymediatorspro-thromboticfactorsmarkersindicativeliverkidneyinjuryEnd-stagecharacterizedshockmulti-organfailuresummaryrecapitulatesupportingusedevelopmentvaccinestherapeuticsNaturalebolavirusanimalfilovirusprimates

Similar Articles

Cited By