Norepinephrine and dopamine contribute to distinct repetitive behaviors induced by novel odorant stress in male and female mice.
Daniel J Lustberg, Joyce Q Liu, Alexa F Iannitelli, Samantha O Vanderhoof, L Cameron Liles, Katharine E McCann, David Weinshenker
Author Information
Daniel J Lustberg: Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
Joyce Q Liu: Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
Alexa F Iannitelli: Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
Samantha O Vanderhoof: Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
L Cameron Liles: Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
Katharine E McCann: Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
David Weinshenker: Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA. Electronic address: dweinsh@emory.edu.
中文译文
English
Exposure to unfamiliar odorants induces an array of repetitive defensive and non-defensive behaviors in rodents which likely reflect adaptive stress responses to the uncertain valence of novel stimuli. Mice genetically deficient for dopamine β-hydroxylase (Dbh-/-) lack the enzyme required to convert dopamine (DA) into norepinephrine (NE), resulting in globally undetectable NE and supranormal DA levels. Because catecholamines modulate novelty detection and reactivity, we investigated the effects of novel plant-derived odorants on repetitive behaviors in Dbh-/- mice and Dbh+/- littermate controls, which have catecholamine levels comparable to wild-type mice. Unlike Dbh+/- controls, which exhibited vigorous digging in response to novel odorants, Dbh-/- mice displayed excessive grooming. Drugs that block NE synthesis or neurotransmission suppressed odorant-induced digging in Dbh+/- mice, while a DA receptor antagonist attenuated grooming in Dbh-/- mice. The testing paradigm elicited high circulating levels of corticosterone regardless of Dbh genotype, indicating that NE is dispensable for this systemic stress response. Odorant exposure increased NE and DA abundance in the prefrontal cortex (PFC) of Dbh+/- mice, while Dbh-/- animals lacked NE and had elevated PFC DA levels that were unaffected by novel smells. Together, these findings suggest that novel odorant-induced increases in central NE tone contribute to repetitive digging and reflect psychological stress, while central DA signaling contributes to repetitive grooming. Further, we have established a simple method for repeated assessment of stress-induced repetitive behaviors in mice, which may be relevant for modeling neuropsychiatric disorders like Tourette syndrome or obsessive-compulsive disorder that are characterized by stress-induced exacerbation of compulsive symptoms.
Brain Res. 2006 Sep 13;1109(1):45-53
[PMID: 16854392 ]
Mol Brain. 2020 Mar 26;13(1):49
[PMID: 32216807 ]
Nature. 2007 Aug 23;448(7156):894-900
[PMID: 17713528 ]
Contemp Top Lab Anim Sci. 2004 Nov;43(6):42-51
[PMID: 15669134 ]
J Neurosci Res. 2021 Sep;99(9):2046-2058
[PMID: 34048600 ]
J Neurosci. 1999 Dec 15;19(24):10985-92
[PMID: 10594079 ]
Behav Brain Res. 1998 Aug;94(2):249-54
[PMID: 9722276 ]
J Neurochem. 2019 Jun;149(6):706-728
[PMID: 30714137 ]
Pharmacol Biochem Behav. 1982 Jul;17(1):31-6
[PMID: 6181531 ]
Psychopharmacology (Berl). 2020 Oct;237(10):3021-3031
[PMID: 32588079 ]
Cogn Affect Behav Neurosci. 2016 Jun;16(3):551-60
[PMID: 26920212 ]
Synapse. 2006 Apr;59(5):299-307
[PMID: 16419046 ]
Synapse. 2004 Jul;53(1):44-52
[PMID: 15150740 ]
Pharmacol Biochem Behav. 2008 Dec;91(2):217-22
[PMID: 18703079 ]
Brain Res. 2010 Mar 31;1322:92-101
[PMID: 20114036 ]
Pharmacol Biochem Behav. 1982 Apr;16(4):637-40
[PMID: 7200246 ]
Mol Psychiatry. 2022 Jan;27(1):502-513
[PMID: 34290370 ]
Neuron. 2010 Jan 14;65(1):7-19
[PMID: 20152109 ]
Eur J Pharmacol. 1989 Feb 7;160(3):377-84
[PMID: 2565818 ]
Sci Rep. 2021 May 3;11(1):9442
[PMID: 33941812 ]
Neuropsychopharmacology. 2010 Nov;35(12):2440-9
[PMID: 20736996 ]
Psychopharmacology (Berl). 2008 Sep;199(4):569-82
[PMID: 18516596 ]
PLoS One. 2012;7(11):e50535
[PMID: 23209770 ]
Psychopharmacology (Berl). 2005 Nov;183(1):72-80
[PMID: 16163519 ]
Neuroscience. 1995 Feb;64(3):619-28
[PMID: 7715775 ]
Neuropsychobiology. 1996;34(3):136-45
[PMID: 8916071 ]
J Am Assoc Lab Anim Sci. 2011 Jul;50(4):479-83
[PMID: 21838975 ]
Br J Pharmacol. 2016 Jul;173(13):2111-21
[PMID: 26171666 ]
Cell. 2017 Nov 16;171(5):992-993
[PMID: 29149614 ]
Cogn Affect Behav Neurosci. 2019 Feb;19(1):1-39
[PMID: 30361863 ]
Brain Res. 1985 Mar 11;329(1-2):294-9
[PMID: 3978450 ]
Neuroscience. 1999;94(4):1245-52
[PMID: 10625064 ]
Endocrinology. 1961 May;68:818-24
[PMID: 13756461 ]
Biol Psychiatry. 1994 Jul 1;36(1):35-43
[PMID: 8080901 ]
J Neurochem. 1989 May;52(5):1655-8
[PMID: 2709017 ]
Psychopharmacology (Berl). 2020 Nov;237(11):3337-3355
[PMID: 32821984 ]
Eur J Pharmacol. 2003 Feb 28;463(1-3):145-61
[PMID: 12600707 ]
Prog Neurobiol. 1992 Sep;39(3):247-79
[PMID: 1502338 ]
Clin Neuropharmacol. 2020 Mar/Apr;43(2):46-47
[PMID: 32106136 ]
J Neurochem. 1998 Jun;70(6):2468-76
[PMID: 9603211 ]
Prog Neuropsychopharmacol Biol Psychiatry. 2005 Dec;29(8):1214-24
[PMID: 16226365 ]
Arch Biochem Biophys. 2011 Apr 1;508(1):1-12
[PMID: 21176768 ]
Brain Res. 2012 Oct 2;1476:71-85
[PMID: 22285436 ]
Molecules. 2021 Apr 28;26(9):
[PMID: 33924992 ]
Eur J Pharmacol. 2005 Jan 31;508(1-3):147-53
[PMID: 15680265 ]
Neuropsychopharmacology. 2019 Mar;44(4):766-775
[PMID: 30470839 ]
Bio Protoc. 2018 Sep 5;8(17):
[PMID: 30271815 ]
Neuropsychopharmacology. 2019 Jul;44(8):1494-1504
[PMID: 30587851 ]
Pharmacol Biochem Behav. 1981 Oct;15(4):619-26
[PMID: 6117086 ]
Nat Rev Neurosci. 2016 Jan;17(1):45-59
[PMID: 26675822 ]
Eur J Pharmacol. 2001 May 25;420(2-3):97-102
[PMID: 11408030 ]
J Pharmacol Toxicol Methods. 2020 Mar - Apr;102:106676
[PMID: 31954839 ]
Neuroscience. 2011 Sep 29;192:20-7
[PMID: 21767616 ]
Nature. 1995 Apr 13;374(6523):643-6
[PMID: 7715704 ]
J Neurosci. 2010 May 5;30(18):6387-97
[PMID: 20445065 ]
Brain Struct Funct. 2020 Mar;225(2):785-803
[PMID: 32065256 ]
J Neurochem. 2001 Oct;79(2):349-60
[PMID: 11677263 ]
J Biol Chem. 2017 Aug 25;292(34):14092-14107
[PMID: 28637871 ]
Brain Res. 2002 Aug 16;946(2):239-46
[PMID: 12137927 ]
Neuroscience. 1998 Mar;83(1):81-91
[PMID: 9466400 ]
J Neurosci. 2011 Mar 16;31(11):4280-9
[PMID: 21411669 ]
Neurosci Biobehav Rev. 1995 Winter;19(4):573-98
[PMID: 8684717 ]
Neurosci Biobehav Rev. 2001 Dec;25(7-8):597-609
[PMID: 11801285 ]
Brain Behav Immun. 2018 Jan;67:1-12
[PMID: 28216088 ]
J Comp Neurol. 2004 Sep 20;477(3):300-9
[PMID: 15305366 ]
Front Psychiatry. 2021 Jan 27;11:601519
[PMID: 33584368 ]
Psychopharmacology (Berl). 2021 Oct;238(10):2755-2773
[PMID: 34184126 ]
Physiol Behav. 1997 Apr;61(4):543-9
[PMID: 9108573 ]
Eur J Neurosci. 2004 Jun;19(12):3393-7
[PMID: 15217397 ]
Psychopharmacology (Berl). 2020 Jul;237(7):1973-1987
[PMID: 32313981 ]
Philos Trans R Soc Lond B Biol Sci. 2018 Mar 19;373(1742):
[PMID: 29352023 ]
J Neuroendocrinol. 2015 Jun;27(6):446-56
[PMID: 25737097 ]
Front Pharmacol. 2020 Sep 23;11:588160
[PMID: 33071798 ]
Neuropsychopharmacology. 2022 Jan;47(1):211-224
[PMID: 34400778 ]
Prog Neuropsychopharmacol Biol Psychiatry. 2007 Mar 30;31(2):482-95
[PMID: 17188790 ]
Biol Psychiatry. 1999 Nov 1;46(9):1309-20
[PMID: 10560036 ]
Neurosci Lett. 2018 Jul 27;680:60-68
[PMID: 29408218 ]
Behav Neurosci. 2005 Feb;119(1):145-53
[PMID: 15727520 ]
Nat Rev Neurosci. 2017 Jan;18(1):7-19
[PMID: 27881856 ]
Ann Gen Psychiatry. 2019 Mar 11;18:2
[PMID: 30899317 ]
Neuron. 2015 Aug 5;87(3):605-20
[PMID: 26212712 ]
Neuropharmacology. 2017 Jun;119:134-140
[PMID: 28392265 ]
Brain Res. 2015 Dec 10;1629:38-53
[PMID: 26453289 ]
Brain Behav Immun. 2008 Jan;22(1):105-13
[PMID: 17890050 ]
Life Sci. 2006 Mar 20;78(17):1933-9
[PMID: 16182315 ]
Prog Brain Res. 1996;107:379-402
[PMID: 8782532 ]
Integr Org Biol. 2019 Jul 13;1(1):obz017
[PMID: 33791532 ]
J Chem Ecol. 2016 Sep;42(9):970-983
[PMID: 27613544 ]
Neuropsychopharmacology. 2013 May;38(6):1032-8
[PMID: 23303068 ]
Ann N Y Acad Sci. 1993 Oct 29;697:173-88
[PMID: 7903030 ]
J Neurosci. 2020 Sep 23;40(39):7464-7474
[PMID: 32868458 ]
Mol Psychiatry. 2002;7(6):617-25, 524
[PMID: 12140785 ]
Neuropsychopharmacology. 2006 Oct;31(10):2221-30
[PMID: 16395294 ]
Synapse. 2008 Jul;62(7):516-23
[PMID: 18435418 ]
PLoS One. 2013 Jun 13;8(6):e66122
[PMID: 23785477 ]
Behav Neurosci. 1999 Dec;113(6):1249-56
[PMID: 10636303 ]
Neuropsychopharmacology. 2021 Jul;46(8):1535-1543
[PMID: 33911187 ]
Neuropsychopharmacology. 2002 Nov;27(5):744-55
[PMID: 12431849 ]
Neuropsychopharmacology. 2022 Jan;47(1):260-275
[PMID: 34400783 ]
J Neurosci. 1999 Jun 15;19(12):5044-53
[PMID: 10366637 ]
Neurotherapeutics. 2020 Oct;17(4):1681-1693
[PMID: 32856174 ]
Pharmacol Biochem Behav. 1996 May;54(1):113-6
[PMID: 8728547 ]
Behav Brain Res. 2002 Feb 1;129(1-2):1-16
[PMID: 11809490 ]
Pharmacol Biochem Behav. 1986 Apr;24(4):1151-4
[PMID: 3714773 ]
J Neurochem. 2014 Feb;128(4):547-60
[PMID: 24117713 ]
Front Hum Neurosci. 2013 Apr 05;7:123
[PMID: 23576971 ]
Sci Rep. 2018 Aug 29;8(1):13020
[PMID: 30158537 ]
Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13873-7
[PMID: 12370425 ]
Horm Behav. 2022 Jan;137:105086
[PMID: 34808463 ]
Brain Res. 2003 Apr 18;969(1-2):183-94
[PMID: 12676379 ]
Science. 2013 Jun 7;340(6137):1234-9
[PMID: 23744948 ]
Biol Psychiatry. 2022 May 1;91(9):786-797
[PMID: 35164940 ]
Neuropsychopharmacology. 1995 Feb;12(1):73-86
[PMID: 7766289 ]
Curr Protoc Neurosci. 2008 Oct;Chapter 9:Unit 9.30
[PMID: 18972380 ]
Curr Protoc Neurosci. 2009 Jul;Chapter 8:Unit 8.24
[PMID: 19575474 ]
J Psychosom Res. 2008 Nov;65(5):487-96
[PMID: 18940379 ]
Can J Physiol Pharmacol. 1975 Aug;53(4):629-37
[PMID: 1175088 ]
Brain Behav. 2015 Sep 24;5(10):e00393
[PMID: 26516613 ]
R01 NS102306/NINDS NIH HHS
RF1 AG061175/NIA NIH HHS
T32 ES012870/NIEHS NIH HHS
T32 NS007480/NINDS NIH HHS
Animals
Dopamine
Dopamine beta-Hydroxylase
Mice
Norepinephrine
Odorants
Prefrontal Cortex
Dopamine beta-Hydroxylase
Dopamine
Norepinephrine