Machine learning the metastable phase diagram of covalently bonded carbon.

Srilok Srinivasan, Rohit Batra, Duan Luo, Troy Loeffler, Sukriti Manna, Henry Chan, Liuxiang Yang, Wenge Yang, Jianguo Wen, Pierre Darancet, Subramanian K R S Sankaranarayanan
Author Information
  1. Srilok Srinivasan: Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA. ORCID
  2. Rohit Batra: Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA.
  3. Duan Luo: Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA. ORCID
  4. Troy Loeffler: Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA.
  5. Sukriti Manna: Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA.
  6. Henry Chan: Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA. ORCID
  7. Liuxiang Yang: Center for High Pressure Science and Technology Advanced Research, 100193, Beijing, P. R. China. ORCID
  8. Wenge Yang: Center for High Pressure Science and Technology Advanced Research, 100193, Beijing, P. R. China. ORCID
  9. Jianguo Wen: Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA. jwen@anl.gov. ORCID
  10. Pierre Darancet: Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA. pdarancet@anl.gov. ORCID
  11. Subramanian K R S Sankaranarayanan: Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA. skrssank@uic.edu. ORCID

Abstract

Conventional phase diagram generation involves experimentation to provide an initial estimate of the set of thermodynamically accessible phases and their boundaries, followed by use of phenomenological models to interpolate between the available experimental data points and extrapolate to experimentally inaccessible regions. Such an approach, combined with high throughput first-principles calculations and data-mining techniques, has led to exhaustive thermodynamic databases (e.g. compatible with the CALPHAD method), albeit focused on the reduced set of phases observed at distinct thermodynamic equilibria. In contrast, materials during their synthesis, operation, or processing, may not reach their thermodynamic equilibrium state but, instead, remain trapped in a local (metastable) free energy minimum, which may exhibit desirable properties. Here, we introduce an automated workflow that integrates first-principles physics and atomistic simulations with machine learning (ML), and high-performance computing to allow rapid exploration of the metastable phases to construct "metastable" phase diagrams for materials far-from-equilibrium. Using carbon as a prototypical system, we demonstrate automated metastable phase diagram construction to map hundreds of metastable states ranging from near equilibrium to far-from-equilibrium (400 meV/atom). We incorporate the free energy calculations into a neural-network-based learning of the equations of state that allows for efficient construction of metastable phase diagrams. We use the metastable phase diagram and identify domains of relative stability and synthesizability of metastable materials. High temperature high pressure experiments using a diamond anvil cell on graphite sample coupled with high-resolution transmission electron microscopy (HRTEM) confirm our metastable phase predictions. In particular, we identify the previously ambiguous structure of n-diamond as a cubic-analog of diaphite-like lonsdaelite phase.

References

  1. Acc Chem Res. 2011 Mar 15;44(3):227-37 [PMID: 21361336]
  2. J Phys Chem Lett. 2022 Feb 24;13(7):1886-1893 [PMID: 35175062]
  3. Sci Rep. 2014 Aug 04;4:5930 [PMID: 25088720]
  4. J Chem Phys. 2012 Feb 21;136(7):074103 [PMID: 22360232]
  5. Nano Lett. 2018 Nov 14;18(11):7247-7253 [PMID: 30251545]
  6. J Phys Condens Matter. 2012 Apr 25;24(16):165504 [PMID: 22466756]
  7. Sci Rep. 2015 Aug 24;5:13447 [PMID: 26299905]
  8. Science. 1991 Aug 16;253(5021):772-4 [PMID: 17835494]
  9. Phys Rev B Condens Matter. 1987 May 15;35(14):7623-7626 [PMID: 9941068]
  10. J Chem Phys. 2014 Feb 7;140(5):054514 [PMID: 24511959]
  11. Nature. 2018 Aug;560(7717):204-208 [PMID: 30089918]
  12. Phys Rev Lett. 2004 Jun 18;92(24):246401 [PMID: 15245113]
  13. J Chem Theory Comput. 2019 Nov 12;15(11):5845-5857 [PMID: 31532997]
  14. Angew Chem Int Ed Engl. 2016 Sep 5;55(37):10962-76 [PMID: 27438532]
  15. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  16. IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Nov;65(11):2167-2175 [PMID: 30113894]
  17. Phys Rev Lett. 2000 Feb 21;84(8):1716-9 [PMID: 11017608]
  18. Science. 1962 Sep 28;137(3535):1057-8 [PMID: 17774419]
  19. Phys Rev B Condens Matter. 1996 Dec 1;54(21):14994-15001 [PMID: 9985555]
  20. Faraday Discuss. 2018 Oct 26;211(0):61-77 [PMID: 30073236]
  21. Sci Rep. 2016 Apr 18;6:24665 [PMID: 27087405]
  22. Phys Rev Lett. 1995 May 15;74(20):4015-4018 [PMID: 10058391]
  23. J Chem Phys. 2013 Mar 21;138(11):114101 [PMID: 23534621]
  24. Phys Rev Lett. 2011 Feb 18;106(7):075501 [PMID: 21405524]
  25. Phys Rev Lett. 2017 Aug 18;119(7):076401 [PMID: 28949674]
  26. Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 [PMID: 9984901]
  27. Angew Chem Int Ed Engl. 2020 Sep 7;59(37):15880-15885 [PMID: 32497368]
  28. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2013 Oct;69(Pt 5):474-9 [PMID: 24056356]
  29. Phys Rev Lett. 2018 Apr 6;120(14):145301 [PMID: 29694125]
  30. J Chem Phys. 2016 Nov 7;145(17):170901 [PMID: 27825224]
  31. Chemphyschem. 2017 Apr 19;18(8):873-877 [PMID: 28271606]
  32. Phys Rev B Condens Matter. 1986 Jul 15;34(2):1191-1199 [PMID: 9939737]
  33. Top Curr Chem. 2014;345:181-222 [PMID: 24515753]
  34. Phys Rev Lett. 2011 Nov 18;107(21):215502 [PMID: 22181894]
  35. Sci Adv. 2018 Apr 20;4(4):eaaq0148 [PMID: 29725618]
  36. Science. 1967 Feb 24;155(3765):995-7 [PMID: 17830485]
  37. J Chem Phys. 2012 Sep 14;137(10):101101 [PMID: 22979841]
  38. Comput Mater Sci. 2016 Dec;125:188-196 [PMID: 28260838]
  39. Phys Chem Chem Phys. 2013 Jan 14;15(2):680-4 [PMID: 23187896]
  40. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 [PMID: 10062328]
  41. Nat Commun. 2022 Jan 18;13(1):368 [PMID: 35042872]
  42. Phys Rev Lett. 2005 Apr 15;94(14):145701 [PMID: 15904077]
  43. J Am Chem Soc. 2012 Aug 1;134(30):12362-5 [PMID: 22803841]
  44. Phys Rev Lett. 2010 Apr 2;104(13):136403 [PMID: 20481899]
  45. Nat Commun. 2014 Nov 20;5:5447 [PMID: 25410324]
  46. Nat Commun. 2019 May 28;10(1):2339 [PMID: 31138813]

Word Cloud

Created with Highcharts 10.0.0metastablephasediagramphasesthermodynamicmaterialslearningsetusehighfirst-principlescalculationsmayequilibriumstatefreeenergyautomateddiagramsfar-from-equilibriumcarbonconstructionidentifyConventionalgenerationinvolvesexperimentationprovideinitialestimatethermodynamicallyaccessibleboundariesfollowedphenomenologicalmodelsinterpolateavailableexperimentaldatapointsextrapolateexperimentallyinaccessibleregionsapproachcombinedthroughputdata-miningtechniquesledexhaustivedatabasesegcompatibleCALPHADmethodalbeitfocusedreducedobserveddistinctequilibriacontrastsynthesisoperationprocessingreachinsteadremaintrappedlocalminimumexhibitdesirablepropertiesintroduceworkflowintegratesphysicsatomisticsimulationsmachineMLhigh-performancecomputingallowrapidexplorationconstruct"metastable"Usingprototypicalsystemdemonstratemaphundredsstatesrangingnear400meV/atomincorporateneural-network-basedequationsallowsefficientdomainsrelativestabilitysynthesizabilityHightemperaturepressureexperimentsusingdiamondanvilcellgraphitesamplecoupledhigh-resolutiontransmissionelectronmicroscopyHRTEMconfirmpredictionsparticularpreviouslyambiguousstructuren-diamondcubic-analogdiaphite-likelonsdaeliteMachinecovalentlybonded

Similar Articles

Cited By