MEGH: A parametric class of general hazard models for clustered survival data.

Francisco Javier Rubio, Reza Drikvandi
Author Information
  1. Francisco Javier Rubio: Department of Statistical Science, University College London, London, UK. ORCID
  2. Reza Drikvandi: Department of Mathematical Sciences, 3057Durham University, Durham, UK. ORCID

Abstract

In many applications of survival data analysis, the individuals are treated in different medical centres or belong to different clusters defined by geographical or administrative regions. The analysis of such data requires accounting for between-cluster variability. Ignoring such variability would impose unrealistic assumptions in the analysis and could affect the inference on the statistical models. We develop a novel parametric mixed-effects general hazard (MEGH) model that is particularly suitable for the analysis of clustered survival data. The proposed structure generalises the mixed-effects proportional hazards and mixed-effects accelerated failure time structures, among other structures, which are obtained as special cases of the MEGH structure. We develop a likelihood-based algorithm for parameter estimation in general subclasses of the MEGH model, which is implemented in our R package MEGH. We propose diagnostic tools for assessing the random effects and their distributional assumption in the proposed MEGH model. We investigate the performance of the MEGH model using theoretical and simulation studies, as well as a real data application on leukaemia.

Keywords

References

  1. Stat Methods Med Res. 2019 Aug;28(8):2404-2417 [PMID: 30068256]
  2. Biometrics. 2009 Jun;65(2):369-76 [PMID: 18759835]
  3. Int Stat Rev. 2017 Aug;85(2):185-203 [PMID: 29307954]
  4. Stat Med. 2016 Aug 15;35(18):3066-84 [PMID: 26924122]
  5. Pharm Stat. 2020 May;19(3):187-201 [PMID: 31663263]
  6. Biostatistics. 2013 Jan;14(1):144-59 [PMID: 22930674]
  7. Biometrics. 2003 Jun;59(2):254-62 [PMID: 12926710]
  8. Biometrics. 2002 Jun;58(2):287-97 [PMID: 12071401]
  9. Stat Methods Med Res. 2017 Apr;26(2):970-983 [PMID: 25539840]
  10. Biostatistics. 2013 Jul;14(3):477-90 [PMID: 23376427]
  11. Stat Med. 2019 Nov 10;38(25):5034-5047 [PMID: 31460683]
  12. Stat Med. 2014 Sep 28;33(22):3844-58 [PMID: 24789760]
  13. Stat Med. 2021 Aug 30;40(19):4213-4229 [PMID: 34114254]
  14. Lifetime Data Anal. 1995;1(3):255-73 [PMID: 9385105]
  15. Lifetime Data Anal. 2005 Mar;11(1):131-42 [PMID: 15747594]
  16. Biometrics. 2017 Mar;73(1):63-71 [PMID: 27377556]
  17. Biometrics. 1994 Dec;50(4):1171-7 [PMID: 7786999]
  18. Stat Med. 2000 Dec 30;19(24):3309-24 [PMID: 11122497]

MeSH Term

Computer Simulation
Humans
Likelihood Functions
Models, Statistical
Proportional Hazards Models
Survival Analysis

Word Cloud

Created with Highcharts 10.0.0dataMEGHsurvivalanalysismodelmixed-effectsgeneraldifferentvariabilitymodelsdevelopparametrichazardclusteredproposedstructureproportionalhazardsfailuretimestructuresdiagnosticrandomeffectsmanyapplicationsindividualstreatedmedicalcentresbelongclustersdefinedgeographicaladministrativeregionsrequiresaccountingbetween-clusterIgnoringimposeunrealisticassumptionsaffectinferencestatisticalnovelparticularlysuitablegeneralisesacceleratedamongobtainedspecialcaseslikelihood-basedalgorithmparameterestimationsubclassesimplementedRpackageproposetoolsassessingdistributionalassumptioninvestigateperformanceusingtheoreticalsimulationstudieswellrealapplicationleukaemiaMEGH:classAcceleratedtool

Similar Articles

Cited By