The Gut Microbiota Composition of and Their Predicted Contribution to Larval Nutrition.

Chuanming Li, Guangjie Han, Jun Sun, Lixin Huang, Yurong Lu, Yang Xia, Qin Liu, Jian Xu
Author Information
  1. Chuanming Li: Department of Applied Microbiology, Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou, China.
  2. Guangjie Han: Department of Applied Microbiology, Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou, China.
  3. Jun Sun: Yangzhou Luyuan Bio-Chemical Co., Ltd., Yangzhou, China.
  4. Lixin Huang: Department of Applied Microbiology, Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou, China.
  5. Yurong Lu: Department of Applied Microbiology, Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou, China.
  6. Yang Xia: Department of Applied Microbiology, Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou, China.
  7. Qin Liu: Department of Applied Microbiology, Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou, China.
  8. Jian Xu: Department of Applied Microbiology, Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou, China.

Abstract

Intestinal bacterial flora plays an important role in the nutrition, physiology, and behavior of herbivorous insects. The composition of gut microbiota may also be affected by the food consumed. is an oligophagous pest, feeds on rice leaves almost exclusively and causes serious damage to rice in Asian countries. Using antibiotic treatment and metagenome sequencing, we investigated the influence of the food sources (rice and maize seedlings) on the structure and functions of intestinal bacteria of . Firstly, food utilization indices, relative growth rate (), relative consumption rate (), efficiency of conversion of ingested food (), and efficiency of conversion of digested food (), were all significantly adversely affected in the antibiotic treatment eliminating gut bacteria, showing that the microbiota loading in the gut were essential for the larva growth and development of . Further, metagenome sequencing revealed that different diets caused a variation in gut microbiota composition of , indicating that the gut microbiota were in part driven by the diet provided. However, the larvae of hosted a core microbial community in the gut, which was independent from the diets changing. The dominant bacteria in the two feeding groups were highly consistent in the gut of larvae, with the gut bacterial community dominated by Firmicutes at the phylum level, at the genus level, sp. FDAARGOS-375, , , and sp. CR-Ec1 accounted for more than 96% of the gut microbiota. Functional prediction analysis demonstrated that gut bacteria encoded a series of metabolism-related enzymes involved in carbohydrate metabolism and amino acid synthesis. Carbohydrate metabolism was the most enriched function in both groups and was more abundant in rice feeding group than in maize feeding group. The core dominant species possessed complete pathways of 14 carbohydrates metabolism, 11 amino acids biosynthesis, and two vitamins synthesize, implied to contribute an essential role to the nutrition intake and development of . Finally, the study may provide an in-depth analysis of the symbiont-host co-adaptation and new insights into the management of .

Keywords

References

  1. PLoS One. 2012;7(5):e36765 [PMID: 22586494]
  2. Bioinformatics. 2015 May 15;31(10):1674-6 [PMID: 25609793]
  3. J Microbiol. 2020 May;58(5):367-376 [PMID: 32266563]
  4. Front Microbiol. 2020 Jun 30;11:1492 [PMID: 32714311]
  5. BMC Microbiol. 2018 Dec 29;18(1):228 [PMID: 30594143]
  6. Microbiome. 2020 Mar 16;8(1):38 [PMID: 32178739]
  7. FEMS Microbiol Ecol. 2014 Dec;90(3):543-50 [PMID: 25314312]
  8. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  9. Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15991-15996 [PMID: 31332013]
  10. Proc Biol Sci. 2014 Dec 7;281(1796):20141838 [PMID: 25339726]
  11. J Formos Med Assoc. 2019 Mar;118 Suppl 1:S10-S22 [PMID: 30269936]
  12. J Chem Ecol. 2021 Feb;47(2):227-241 [PMID: 33459999]
  13. Curr Microbiol. 2020 Sep;77(9):1976-1986 [PMID: 32535651]
  14. Front Microbiol. 2020 Jun 26;11:1357 [PMID: 32676060]
  15. Bioinformatics. 2006 Jul 1;22(13):1658-9 [PMID: 16731699]
  16. Plant Dis. 2000 Mar;84(3):341-356 [PMID: 30841253]
  17. PLoS One. 2016 May 03;11(5):e0154514 [PMID: 27139886]
  18. Front Microbiol. 2020 Sep 16;11:576156 [PMID: 33042092]
  19. Annu Rev Microbiol. 2015;69:145-66 [PMID: 26195303]
  20. Oecologia. 2015 Sep;179(1):1-14 [PMID: 25936531]
  21. Front Microbiol. 2018 Mar 27;9:556 [PMID: 29636736]
  22. Curr Opin Insect Sci. 2018 Aug;28:59-65 [PMID: 30551768]
  23. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  24. Ecol Evol. 2020 Jul 16;10(16):8755-8769 [PMID: 32884655]
  25. Bioinformatics. 2014 Nov 1;30(21):3123-4 [PMID: 25061070]
  26. Mol Ecol. 2012 Oct;21(20):5124-37 [PMID: 22978555]
  27. Insect Biochem Mol Biol. 2011 Apr;41(4):273-81 [PMID: 21255649]
  28. PLoS One. 2013 Jul 19;8(7):e68852 [PMID: 23894355]
  29. Annu Rev Entomol. 2015 Jan 7;60:17-34 [PMID: 25341109]
  30. Front Microbiol. 2017 Apr 26;8:663 [PMID: 28491055]
  31. Microb Ecol. 2010 Feb;59(2):199-211 [PMID: 19924467]
  32. PLoS One. 2020 Mar 13;15(3):e0229848 [PMID: 32168341]
  33. Genome Biol. 2014 Mar 03;15(3):R46 [PMID: 24580807]
  34. Environ Entomol. 2011 Oct;40(5):1111-22 [PMID: 22251723]
  35. Insects. 2021 Mar 30;12(4): [PMID: 33808048]
  36. Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):9641-9646 [PMID: 28830993]
  37. Curr Opin Insect Sci. 2020 Oct;41:33-39 [PMID: 32634703]
  38. BMC Bioinformatics. 2011 Sep 30;12:385 [PMID: 21961884]
  39. Environ Entomol. 2016 Feb;45(1):66-73 [PMID: 26396228]
  40. Proc Biol Sci. 2019 Dec 18;286(1917):20192438 [PMID: 31847770]
  41. Mol Plant Microbe Interact. 2017 Feb;30(2):127-137 [PMID: 28027025]
  42. Appl Environ Microbiol. 2014 Sep;80(17):5254-64 [PMID: 24928884]
  43. Microorganisms. 2021 Sep 01;9(9): [PMID: 34576755]
  44. Sci Rep. 2021 Feb 24;11(1):4429 [PMID: 33627698]
  45. Nat Methods. 2015 Jan;12(1):59-60 [PMID: 25402007]
  46. Insects. 2019 Mar 28;10(4): [PMID: 30925791]
  47. J Insect Sci. 2020 Jul 1;20(4): [PMID: 32809024]
  48. Front Microbiol. 2016 Jun 28;7:1005 [PMID: 27446044]
  49. Sci Rep. 2016 Jul 08;6:29505 [PMID: 27389097]
  50. PLoS One. 2012;7(1):e30768 [PMID: 22292034]
  51. BMC Bioinformatics. 2010 Mar 08;11:119 [PMID: 20211023]
  52. Nature. 2013 Aug 29;500(7464):585-8 [PMID: 23985875]
  53. FEMS Microbiol Rev. 2013 Sep;37(5):699-735 [PMID: 23692388]
  54. Nat Methods. 2017 Apr;14(4):417-419 [PMID: 28263959]
  55. Mol Biol Evol. 2017 Aug 1;34(8):2115-2122 [PMID: 28460117]
  56. Environ Entomol. 2009 Aug;38(4):1078-85 [PMID: 19689886]

Word Cloud

Created with Highcharts 10.0.0gutmicrobiotafoodricebacterianutritionfeedingmetabolismbacterialrolecompositionmayaffectedantibiotictreatmentmetagenomesequencingmaizerelativegrowthrateefficiencyconversionessentialdevelopmentdietslarvaecorecommunitydominanttwogroupslevelsppredictionanalysisaminofunctiongroupIntestinalfloraplaysimportantphysiologybehaviorherbivorousinsectsalsoconsumedoligophagouspestfeedsleavesalmostexclusivelycausesseriousdamageAsiancountriesUsinginvestigatedinfluencesourcesseedlingsstructurefunctionsintestinalFirstlyutilizationindicesconsumptioningesteddigestedsignificantlyadverselyeliminatingshowingloadinglarvarevealeddifferentcausedvariationindicatingpartdrivendietprovidedHoweverhostedmicrobialindependentchanginghighlyconsistentdominatedFirmicutesphylumgenusFDAARGOS-375CR-Ec1accounted96%Functionaldemonstratedencodedseriesmetabolism-relatedenzymesinvolvedcarbohydrateacidsynthesisCarbohydrateenrichedabundantspeciespossessedcompletepathways14carbohydrates11acidsbiosynthesisvitaminssynthesizeimpliedcontributeintakeFinallystudyprovidein-depthsymbiont-hostco-adaptationnewinsightsmanagementGutMicrobiotaCompositionPredictedContributionLarvalNutritionCnaphalocrocismedinalismetagenomic

Similar Articles

Cited By