Clinical and Preclinical Evidence for M Muscarinic Acetylcholine Receptor Potentiation as a Therapeutic Approach for Rett Syndrome.

Mackenzie Smith, Bright Arthur, Jakub Cikowski, Calista Holt, Sonia Gonzalez, Nicole M Fisher, Sheryl Anne D Vermudez, Craig W Lindsley, Colleen M Niswender, Rocco G Gogliotti
Author Information
  1. Mackenzie Smith: Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA.
  2. Bright Arthur: Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
  3. Jakub Cikowski: Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA.
  4. Calista Holt: Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA.
  5. Sonia Gonzalez: Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA.
  6. Nicole M Fisher: Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
  7. Sheryl Anne D Vermudez: Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
  8. Craig W Lindsley: Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
  9. Colleen M Niswender: Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
  10. Rocco G Gogliotti: Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA. rgogliotti@luc.edu. ORCID

Abstract

Rett syndrome (RTT) is a neurodevelopmental disorder that is characterized by developmental regression, loss of communicative ability, stereotyped hand wringing, cognitive impairment, and central apneas, among many other symptoms. RTT is caused by loss-of-function mutations in a methyl-reader known as methyl-CpG-binding protein 2 (MeCP2), a protein that links epigenetic changes on DNA to larger chromatin structure. Historically, target identification for RTT has relied heavily on Mecp2 knockout mice; however, we recently adopted the alternative approach of performing transcriptional profiling in autopsy samples from RTT patients. Through this mechanism, we identified muscarinic acetylcholine receptors (mAChRs) as potential therapeutic targets. Here, we characterized a cohort of 40 temporal cortex samples from individuals with RTT and quantified significantly decreased levels of the M, M, M, and M mAChRs subtypes relative to neurotypical controls. Of these four subtypes, M expression demonstrated a linear relationship with MeCP2 expression, such that M levels were only diminished in contexts where MeCP2 was also significantly decreased. Further, we show that M potentiation with the positive allosteric modulator (PAM) VU0453595 (VU595) rescued social preference, spatial memory, and associative memory deficits, as well as decreased apneas in Mecp2 mice. VU595's efficacy on apneas in Mecp2 mice was mediated by the facilitation of the transition from inspiration to expiration. Molecular analysis correlated rescue with normalized global gene expression patterns in the brainstem and hippocampus, as well as increased Gsk3β inhibition and NMDA receptor trafficking. Together, these data suggest that M PAMs could represent a new class of RTT therapeutics.

Keywords

References

  1. Neuropsychopharmacology. 2018 Jul;43(8):1763-1771 [PMID: 29581537]
  2. Nat Protoc. 2013 Dec;8(12):2531-7 [PMID: 24263092]
  3. J Mol Biol. 2019 Oct 17;: [PMID: 31629770]
  4. PLoS One. 2021 Oct 21;16(10):e0258830 [PMID: 34673817]
  5. Naunyn Schmiedebergs Arch Pharmacol. 2009 Apr;379(4):389-95 [PMID: 18974978]
  6. Mol Cell Neurosci. 2014 Mar;59:63-75 [PMID: 24472844]
  7. Neurosci Res. 2017 Feb;115:1-4 [PMID: 27876581]
  8. J Pharmacol Exp Ther. 2018 May;365(2):291-300 [PMID: 29523700]
  9. Neurobiol Dis. 2007 May;26(2):473-80 [PMID: 17395475]
  10. Science. 2008 May 30;320(5880):1224-9 [PMID: 18511691]
  11. Neuropsychopharmacology. 2016 Jan;41(2):598-610 [PMID: 26108886]
  12. Genome Med. 2017 Feb 17;9(1):17 [PMID: 28212680]
  13. J Neurosci Res. 2016 Oct;94(10):896-906 [PMID: 27317352]
  14. Hum Mol Genet. 2013 Jan 1;22(1):96-109 [PMID: 23026749]
  15. J Physiol. 2007 Mar 15;579(Pt 3):863-76 [PMID: 17204503]
  16. Eur J Neurosci. 2021 Oct;54(8):6815-6825 [PMID: 32463939]
  17. Arch Neurol. 1997 Apr;54(4):465-73 [PMID: 9109749]
  18. Elife. 2020 May 18;9: [PMID: 32420873]
  19. Neuroscience. 1996 Jul;73(1):79-84 [PMID: 8783231]
  20. Nat Neurosci. 2016 Nov;19(11):1497-1505 [PMID: 27428650]
  21. Alzheimers Dement (N Y). 2018 Apr 26;4:173-181 [PMID: 29955661]
  22. Neuron. 2012 Dec 20;76(6):1078-90 [PMID: 23259945]
  23. Epilepsia. 2012 Dec;53(12):2067-78 [PMID: 22998673]
  24. Pediatr Res. 2006 Oct;60(4):443-9 [PMID: 16940240]
  25. Sci Transl Med. 2017 Aug 16;9(403): [PMID: 28814546]
  26. Pharmacol Res Perspect. 2020 Feb;8(1):e00560 [PMID: 31990455]
  27. Recept Channels. 2003;9(4):241-60 [PMID: 12893537]
  28. J Biol Chem. 2005 Nov 11;280(45):37526-35 [PMID: 16155008]
  29. ACS Chem Neurosci. 2018 Sep 19;9(9):2274-2285 [PMID: 29701957]
  30. Psychopharmacology (Berl). 1988;96(2):145-52 [PMID: 3148139]
  31. J Comp Neurol. 2017 Dec 15;525(18):3951-3961 [PMID: 28857161]
  32. Trends Pharmacol Sci. 2019 Apr;40(4):233-236 [PMID: 30905360]
  33. Neuropediatrics. 1995 Apr;26(2):119-22 [PMID: 7566449]
  34. Nat Genet. 1999 Oct;23(2):185-8 [PMID: 10508514]
  35. Curr Opin Pediatr. 2004 Dec;16(6):670-7 [PMID: 15548931]
  36. ACS Chem Neurosci. 2018 Sep 19;9(9):2218-2224 [PMID: 29683646]
  37. Cell. 2016 Jul 14;166(2):299-313 [PMID: 27293187]
  38. Curr Opin Neurol. 1995 Apr;8(2):156-60 [PMID: 7620591]
  39. Neuroscience. 2007 May 25;146(3):907-21 [PMID: 17383101]
  40. Trends Pharmacol Sci. 1993 Aug;14(8):308-13 [PMID: 8249149]
  41. BMJ Paediatr Open. 2020 Sep 22;4(1):e000731 [PMID: 33024833]
  42. Biol Psychiatry. 2016 May 1;79(9):710-2 [PMID: 27079494]
  43. Dis Model Mech. 2012 Nov;5(6):733-45 [PMID: 23115203]
  44. Cell Rep. 2018 May 8;23(6):1665-1677 [PMID: 29742424]
  45. N Engl J Med. 2021 Feb 25;384(8):717-726 [PMID: 33626254]
  46. Respir Physiol Neurobiol. 2004 Nov 15;143(2-3):251-62 [PMID: 15519559]
  47. Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):E4782-91 [PMID: 26261347]
  48. J Neurosci. 2013 Aug 21;33(34):13612-20 [PMID: 23966684]
  49. Biol Psychiatry. 2016 May 1;79(9):755-764 [PMID: 26410354]
  50. J Neurosci. 2012 Oct 3;32(40):13860-72 [PMID: 23035095]
  51. Neuropsychopharmacology. 2019 Apr;44(5):950-960 [PMID: 30089885]
  52. eNeuro. 2019 Nov 1;6(6): [PMID: 31562178]
  53. Nat Neurosci. 2013 Jul;16(7):898-902 [PMID: 23770565]
  54. Front Neurol. 2020 Oct 30;11:593554 [PMID: 33193060]

Grants

  1. T32 GM007628/NIGMS NIH HHS
  2. F31 MH119699/NIMH NIH HHS
  3. R01 NS112171/NINDS NIH HHS
  4. K01 MH112983/NIMH NIH HHS
  5. P50 HD103537/NICHD NIH HHS
  6. F31 MH113259/NIMH NIH HHS

MeSH Term

Mice
Animals
Rett Syndrome
Methyl-CpG-Binding Protein 2
Apnea
Receptors, N-Methyl-D-Aspartate
Glycogen Synthase Kinase 3 beta
Mice, Knockout
Receptors, Muscarinic
Chromatin

Chemicals

Methyl-CpG-Binding Protein 2
Receptors, N-Methyl-D-Aspartate
Glycogen Synthase Kinase 3 beta
Receptors, Muscarinic
Chromatin

Word Cloud

Created with Highcharts 10.0.0MRTTRettapneasMeCP2Mecp2micedecreasedexpressionsyndromecharacterizedproteinsamplesmAChRssignificantlylevelssubtypesmemorywellGsk3βneurodevelopmentaldisorderdevelopmentalregressionlosscommunicativeabilitystereotypedhandwringingcognitiveimpairmentcentralamongmanysymptomscausedloss-of-functionmutationsmethyl-readerknownmethyl-CpG-binding2linksepigeneticchangesDNAlargerchromatinstructureHistoricallytargetidentificationreliedheavilyknockouthoweverrecentlyadoptedalternativeapproachperformingtranscriptionalprofilingautopsypatientsmechanismidentifiedmuscarinicacetylcholinereceptorspotentialtherapeutictargetscohort40temporalcortexindividualsquantifiedrelativeneurotypicalcontrolsfourdemonstratedlinearrelationshipdiminishedcontextsalsoshowpotentiationpositiveallostericmodulatorPAMVU0453595VU595rescuedsocialpreferencespatialassociativedeficitsVU595'sefficacymediatedfacilitationtransitioninspirationexpirationMolecularanalysiscorrelatedrescuenormalizedglobalgenepatternsbrainstemhippocampusincreasedinhibitionNMDAreceptortraffickingTogetherdatasuggestPAMsrepresentnewclasstherapeuticsClinicalPreclinicalEvidenceMuscarinicAcetylcholineReceptorPotentiationTherapeuticApproachSyndromeApneasBrainstemCognitionM1mAChR

Similar Articles

Cited By