Additive Manufacturing of Conducting Polymers: Recent Advances, Challenges, and Opportunities.

Miryam Criado-Gonzalez, Antonio Dominguez-Alfaro, Naroa Lopez-Larrea, Nuria Alegret, David Mecerreyes
Author Information
  1. Miryam Criado-Gonzalez: POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain. ORCID
  2. Antonio Dominguez-Alfaro: POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain. ORCID
  3. Naroa Lopez-Larrea: POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain.
  4. Nuria Alegret: POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain. ORCID
  5. David Mecerreyes: POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain. ORCID

Abstract

Conducting polymers (CPs) have been attracting great attention in the development of (bio)electronic devices. Most of the current devices are rigid two-dimensional systems and possess uncontrollable geometries and architectures that lead to poor mechanical properties presenting ion/electronic diffusion limitations. The goal of the article is to provide an overview about the additive manufacturing (AM) of conducting polymers, which is of paramount importance for the design of future wearable three-dimensional (3D) (bio)electronic devices. Among different 3D printing AM techniques, inkjet, extrusion, electrohydrodynamic, and light-based printing have been mainly used. This review article collects examples of 3D printing of conducting polymers such as poly(3,4-ethylene-dioxythiophene), polypyrrole, and polyaniline. It also shows examples of AM of these polymers combined with other polymers and/or conducting fillers such as carbon nanotubes, graphene, and silver nanowires. Afterward, the foremost applications of CPs processed by 3D printing techniques in the biomedical and energy fields, that is, wearable electronics, sensors, soft robotics for human motion, or health monitoring devices, among others, will be discussed.

References

  1. Nat Commun. 2019 Apr 29;10(1):1933 [PMID: 31036866]
  2. Macromol Biosci. 2016 Aug;16(8):1227-38 [PMID: 27168277]
  3. Macromol Rapid Commun. 2021 Jun;42(12):e2100100 [PMID: 33938086]
  4. Nat Commun. 2019 Mar 5;10(1):1043 [PMID: 30837483]
  5. Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9287-92 [PMID: 22645374]
  6. Small. 2011 Dec 16;7(24):3434-8 [PMID: 21972116]
  7. Biofabrication. 2016 Aug 26;8(3):035009 [PMID: 27563025]
  8. Polymers (Basel). 2021 Feb 02;13(3): [PMID: 33540900]
  9. Sci Rep. 2017 Jan 30;7:41566 [PMID: 28134283]
  10. Chem Soc Rev. 2016 May 21;45(10):2740-55 [PMID: 27048921]
  11. Chem Rev. 2017 Aug 9;117(15):10212-10290 [PMID: 28756658]
  12. ACS Appl Mater Interfaces. 2018 Apr 11;10(14):11888-11895 [PMID: 29570263]
  13. Sci Rep. 2017 Jun 19;7(1):3787 [PMID: 28630435]
  14. ACS Appl Mater Interfaces. 2019 Aug 28;11(34):30518-30533 [PMID: 31373791]
  15. Polymers (Basel). 2018 Sep 08;10(9): [PMID: 30960928]
  16. Chem Rev. 2020 Oct 14;120(19):10547-10607 [PMID: 32407108]
  17. Adv Mater. 2016 Mar 16;28(11):2217-22 [PMID: 26784382]
  18. Biomater Sci. 2020 Aug 7;8(15):4287-4298 [PMID: 32589696]
  19. Polymers (Basel). 2020 Jul 23;12(8): [PMID: 32717878]
  20. ACS Nano. 2016 Sep 27;10(9):8879-87 [PMID: 27564233]
  21. Front Bioeng Biotechnol. 2019 Oct 16;7:266 [PMID: 31750293]
  22. Gels. 2020 Apr 18;6(2): [PMID: 32325773]
  23. Nanoscale. 2015 Jul 7;7(25):10883-95 [PMID: 26059685]
  24. ACS Appl Mater Interfaces. 2020 Feb 19;12(7):8713-8721 [PMID: 32043356]
  25. ACS Appl Mater Interfaces. 2018 Dec 19;10(50):43904-43914 [PMID: 30475577]
  26. ACS Appl Mater Interfaces. 2020 Apr 15;12(15):17799-17805 [PMID: 32186179]
  27. Bioact Mater. 2020 Apr 07;5(3):468-485 [PMID: 32280836]
  28. ACS Appl Mater Interfaces. 2018 Jun 6;10(22):19116-19122 [PMID: 29745637]
  29. Adv Mater. 2019 Nov;31(48):e1904765 [PMID: 31538370]
  30. Nanoscale Adv. 2020 Nov 5;3(1):240-248 [PMID: 36131872]
  31. Nat Commun. 2021 Apr 7;12(1):2082 [PMID: 33828100]
  32. ACS Appl Mater Interfaces. 2015 Apr 1;7(12):6550-6 [PMID: 25762308]
  33. Nanomaterials (Basel). 2021 Jan 04;11(1): [PMID: 33406608]
  34. Nanoscale. 2019 May 9;11(18):9176-9184 [PMID: 31038144]
  35. Sci Adv. 2017 Mar 10;3(3):e1602076 [PMID: 28345040]
  36. ACS Appl Mater Interfaces. 2015 Jul 29;7(29):15928-34 [PMID: 26146851]
  37. Materials (Basel). 2019 Aug 06;12(15): [PMID: 31390733]
  38. ACS Biomater Sci Eng. 2020 Feb 10;6(2):1269-1278 [PMID: 33464834]
  39. Mater Sci Eng C Mater Biol Appl. 2019 Jun;99:582-590 [PMID: 30889733]
  40. ACS Appl Mater Interfaces. 2018 Mar 28;10(12):10437-10444 [PMID: 29543426]
  41. Sci Adv. 2020 Sep 30;6(40): [PMID: 32998891]
  42. Adv Healthc Mater. 2021 May;10(9):e2001876 [PMID: 33711199]
  43. ACS Cent Sci. 2020 Sep 23;6(9):1555-1563 [PMID: 32999930]
  44. Adv Healthc Mater. 2019 Aug;8(15):e1900425 [PMID: 31168967]
  45. Nanoscale. 2019 Aug 15;11(32):15195-15205 [PMID: 31380883]
  46. Nat Commun. 2020 Mar 30;11(1):1604 [PMID: 32231216]
  47. Materials (Basel). 2020 Jan 22;13(3): [PMID: 31978961]
  48. Chem Rev. 2020 Oct 14;120(19):10744-10792 [PMID: 32469510]
  49. ACS Appl Mater Interfaces. 2017 May 31;9(21):18254-18262 [PMID: 28485142]
  50. Nat Commun. 2020 Feb 6;11(1):753 [PMID: 32029714]
  51. Polymers (Basel). 2020 Jan 02;12(1): [PMID: 31906536]
  52. Materials (Basel). 2017 Feb 23;10(3): [PMID: 28772578]
  53. Polymers (Basel). 2017 Aug 11;9(8): [PMID: 30971030]
  54. Adv Mater. 2018 Aug 28;:e1803980 [PMID: 30151842]
  55. Acta Biomater. 2020 Jan 1;101:1-13 [PMID: 31476385]
  56. Sci Rep. 2016 Oct 18;6:35289 [PMID: 27752050]
  57. Nat Commun. 2020 Mar 12;11(1):1332 [PMID: 32165612]
  58. J Mater Chem B. 2019 Jan 14;7(2):173-197 [PMID: 32254546]
  59. ACS Macro Lett. 2017 Apr 18;6(4):473-478 [PMID: 35610866]
  60. Sci Rep. 2018 Jun 29;8(1):9855 [PMID: 29959353]
  61. Adv Mater. 2013 Sep 25;25(36):5011-28 [PMID: 24038336]
  62. ACS Omega. 2018 Jul 31;3(7):7424-7431 [PMID: 30087913]
  63. ACS Appl Mater Interfaces. 2015 May 13;7(18):9589-97 [PMID: 25894982]
  64. J Mater Chem B. 2020 Jul 15;8(27):5862-5876 [PMID: 32558857]
  65. Small. 2019 Jul;15(27):e1901406 [PMID: 31025545]
  66. Adv Funct Mater. 2020 Aug 14;30(42):2003710 [PMID: 34035794]
  67. ACS Appl Mater Interfaces. 2019 Oct 9;11(40):37069-37076 [PMID: 31533420]
  68. Adv Mater. 2017 Aug;29(31): [PMID: 28640439]
  69. Chem Commun (Camb). 2020 Mar 14;56(21):3115-3118 [PMID: 32091042]
  70. Nat Commun. 2019 Jun 18;10(1):2676 [PMID: 31213599]

Word Cloud

Created with Highcharts 10.0.0polymersdevices3DprintingAMconductingConductingCPsbioelectronicarticlewearabletechniquesexamplesattractinggreatattentiondevelopmentcurrentrigidtwo-dimensionalsystemspossessuncontrollablegeometriesarchitecturesleadpoormechanicalpropertiespresentingion/electronicdiffusionlimitationsgoalprovideoverviewadditivemanufacturingparamountimportancedesignfuturethree-dimensionalAmongdifferentinkjetextrusionelectrohydrodynamiclight-basedmainlyusedreviewcollectspoly34-ethylene-dioxythiophenepolypyrrolepolyanilinealsoshowscombinedand/orfillerscarbonnanotubesgraphenesilvernanowiresAfterwardforemostapplicationsprocessedbiomedicalenergyfieldselectronicssensorssoftroboticshumanmotionhealthmonitoringamongotherswilldiscussedAdditiveManufacturingPolymers:RecentAdvancesChallengesOpportunities

Similar Articles

Cited By