Drosophila melanogaster as a Rapid and Reliable In Vivo Infection Model to Study the Emerging Yeast Pathogen Candida auris.

Sebastian Wurster, Nathaniel D Albert, Dimitrios P Kontoyiannis
Author Information
  1. Sebastian Wurster: Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. stwurster@mdanderson.org. ORCID
  2. Nathaniel D Albert: Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
  3. Dimitrios P Kontoyiannis: Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Abstract

While mammalian models remain the gold standard to study invasive mycoses, mini-host invertebrate models have provided complementary platforms for explorative investigations of fungal pathogenesis, host-pathogen interplay, and antifungal therapy. Specifically, our group has established Toll-deficient Drosophila melanogaster flies as a facile and cost-effective model organism to study candidiasis, and we have recently expanded these studies to the emerging and frequently multidrug-resistant yeast pathogen Candida auris. Our proof-of-concept data suggest that fruit flies could hold a great promise for large-scale applications in antifungal drug discovery and the screening of C. auris (mutant) libraries with disparate pathogenic capacity. This chapter discusses the advantages and limitations of D. melanogaster to study C. auris candidiasis and provides a step-by-step guide for establishing and troubleshooting C. auris infection and antifungal treatment of Toll-deficient flies along with essential downstream readouts.

Keywords

References

  1. Conti HR, Huppler AR, Whibley N et al (2014) Animal models for candidiasis. Curr Protoc Immunol 105:19.6.1–19.617 [DOI: 10.1002/0471142735.im1906s105]
  2. Segal E, Frenkel M (2018) Experimental in vivo models of candidiasis. J Fungi (Basel) 4(1):E21 [DOI: 10.3390/jof4010021]
  3. Muñoz JF, Gade L, Chow NA et al (2018) Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat Commun 9(1):5346 [DOI: 10.1038/s41467-018-07779-6]
  4. Wall G, Chaturvedi AK, Wormley FL Jr et al (2018) Screening a repurposing library for inhibitors of multidrug-resistant Candida auris identifies ebselen as a repositionable candidate for antifungal drug development. Antimicrob Agents Chemother 62(10):e01084-18 [DOI: 10.1128/AAC.01084-18]
  5. O’Brien B, Chaturvedi S, Chaturvedi V (2020) In vitro evaluation of antifungal drug combinations against multidrug-resistant Candida auris isolates from New York outbreak. Antimicrob Agents Chemother 64(4):e02195-19 [DOI: 10.1128/AAC.02195-19]
  6. Wurster S, Kumaresan PR, Albert ND et al (2019) Live monitoring and analysis of fungal growth, viability, and mycelial morphology using the IncuCyte NeuroTrack processing module. mBio 10(3):e00673-19 [DOI: 10.1128/mBio.00673-19]
  7. Chamilos G, Lionakis MS, Lewis RE et al (2006) Drosophila melanogaster as a facile model for large-scale studies of virulence mechanisms and antifungal drug efficacy in Candida species. J Infect Dis 193(7):1014–1022 [DOI: 10.1086/500950]
  8. Chamilos G, Lewis RE, Hu J et al (2008) Drosophila melanogaster as a model host to dissect the immunopathogenesis of zygomycosis. Proc Natl Acad Sci U S A 105(27):9367–9372 [DOI: 10.1073/pnas.0709578105]
  9. Hamilos G, Samonis G, Kontoyiannis DP (2012) Recent advances in the use of Drosophila melanogaster as a model to study immunopathogenesis of medically important filamentous fungi. Int J Microbiol 2012:583792 [DOI: 10.1155/2012/583792]
  10. Lionakis MS, Kontoyiannis DP (2012) Drosophila melanogaster as a model organism for invasive aspergillosis. Methods Mol Biol 845:455–468 [DOI: 10.1007/978-1-61779-539-8_32]
  11. Wurster S, Bandi A, Beyda ND et al (2019) Drosophila melanogaster as a model to study virulence and azole treatment of the emerging pathogen Candida auris. J Antimicrob Chemother 74(7):1904–1910 [DOI: 10.1093/jac/dkz100]
  12. Du H, Bing J, Hu T et al (2020) Candida auris: epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog 16(10):e1008921 [DOI: 10.1371/journal.ppat.1008921]
  13. Cortegiani A, Misseri G, Fasciana T et al (2018) Epidemiology, clinical characteristics, resistance, and treatment of infections by Candida auris. J Intensive Care 6:69 [DOI: 10.1186/s40560-018-0342-4]
  14. Troha K, Buchon N (2019) Methods for the study of innate immunity in Drosophila melanogaster. Wiley Interdiscip Rev Dev Biol 8(5):e344 [DOI: 10.1002/wdev.344]
  15. Lionakis MS, Lewis RE, May GS et al (2005) Toll-deficient Drosophila flies as a fast, high-throughput model for the study of antifungal drug efficacy against invasive aspergillosis and Aspergillus virulence. J Infect Dis 191(7):1188–1195 [DOI: 10.1086/428587]
  16. Lionakis MS, Kontoyiannis DP (2010) The growing promise of Toll-deficient Drosophila melanogaster as a model for studying Aspergillus pathogenesis and treatment. Virulence 1(6):488–499 [DOI: 10.4161/viru.1.6.13311]
  17. Rowley AF, Powell A (2007) Invertebrate immune systems specific, quasi-specific, or nonspecific? J Immunol 179(11):7209–7214 [DOI: 10.4049/jimmunol.179.11.7209]
  18. Govind S (2008) Innate immunity in Drosophila: pathogens and pathways. Insect Sci 15(1):29–43 [DOI: 10.1111/j.1744-7917.2008.00185.x]
  19. Kounatidis I, Ligoxygakis P (2012) Drosophila as a model system to unravel the layers of innate immunity to infection. Open Biol 2(5):120075 [DOI: 10.1098/rsob.120075]
  20. Lamoth F, Kontoyiannis DP (2018) The Candida auris alert: facts and perspectives. J Infect Dis 217(4):516–520 [DOI: 10.1093/infdis/jix597]
  21. Rossato L, Colombo AL (2018) Candida auris: what have we learned about its mechanisms of pathogenicity? Front Microbiol 9:3081 [DOI: 10.3389/fmicb.2018.03081]
  22. Enkler L, Richer D, Marchand AL et al (2016) Genome engineering in the yeast pathogen Candida glabrata using the CRISPR-Cas9 system. Sci Rep 6:35766 [DOI: 10.1038/srep35766]
  23. Davis MM, Alvarez FJ, Ryman K et al (2011) Wild-type Drosophila melanogaster as a model host to analyze nitrogen source dependent virulence of Candida albicans. PLoS One 6(11):e27434 [DOI: 10.1371/journal.pone.0027434]
  24. Ben-Ami R, Watson CC, Lewis RE et al (2013) Drosophila melanogaster as a model to explore the effects of methicillin-resistant Staphylococcus aureus strain type on virulence and response to linezolid treatment. Microb Pathog 55:16–20 [DOI: 10.1016/j.micpath.2012.11.012]
  25. Christofi T, Apidianakis Y (2013) Drosophila immune priming against Pseudomonas aeruginosa is short-lasting and depends on cellular and humoral immunity. F1000Res 2:76 [DOI: 10.12688/f1000research.2-76.v1]
  26. de Cássia Orlandi Sardi J, Silva DR, Soares Mendes-Giannini MJ et al (2018) Candida auris: epidemiology, risk factors, virulence, resistance, and therapeutic options. Microb Pathog 125:116–121 [DOI: 10.1016/j.micpath.2018.09.014]
  27. Osei Sekyere J (2018) Candida auris: a systematic review and meta-analysis of current updates on an emerging multidrug-resistant pathogen. Microbiologyopen 7(4):e00578 [DOI: 10.1002/mbo3.578]
  28. Shirazi F, Farmakiotis D, Yan Y et al (2014) Diet modification and metformin have a beneficial effect in a fly model of obesity and mucormycosis. PLoS One 9(9):e108635 [DOI: 10.1371/journal.pone.0108635]
  29. Heys C, Lizé A, Blow F et al (2018) The effect of gut microbiota elimination in Drosophila melanogaster: a how-to guide for host-microbiota studies. Ecol Evol 8(8):4150–4161 [DOI: 10.1002/ece3.3991]
  30. Xin H, Mohiuddin F, Tran J et al (2019) Experimental mouse models of disseminated Candida auris infection. mSphere 4(5):e00339-19 [DOI: 10.1128/mSphere.00339-19]
  31. Ben-Ami R, Berman J, Novikov A et al (2017) Multidrug-Resistant Candida haemulonii and C. auris, Tel Aviv, Israel. Emerg Infect Dis 23(1):195–203 [>PMCID: ]
  32. CDC Antimicrobial Resistance Isolate Bank. https://www.cdc.gov/drugresistance/resistance-bank/index.html . Last accessed April 28, 2021
  33. Amparan AA, Djoufack-Momo SM, Grunden B et al (2014) Exposure of research personnel to carbon dioxide during euthanasia procedures. J Am Assoc Lab Anim Sci 53(4):376–380 [PMID: 25199093]

MeSH Term

Animals
Antifungal Agents
Candida
Candida auris
Candidiasis
Drosophila melanogaster
Mammals
Microbial Sensitivity Tests
Saccharomyces cerevisiae

Chemicals

Antifungal Agents

Word Cloud

Created with Highcharts 10.0.0aurismelanogasterfliesstudyantifungalDrosophilaCmodelsToll-deficientmodelcandidiasisCandidatreatmentmammalianremaingoldstandardinvasivemycosesmini-hostinvertebrateprovidedcomplementaryplatformsexplorativeinvestigationsfungalpathogenesishost-pathogeninterplaytherapySpecificallygroupestablishedfacilecost-effectiveorganismrecentlyexpandedstudiesemergingfrequentlymultidrug-resistantyeastpathogenproof-of-conceptdatasuggestfruitholdgreatpromiselarge-scaleapplicationsdrugdiscoveryscreeningmutantlibrariesdisparatepathogeniccapacitychapterdiscussesadvantageslimitationsDprovidesstep-by-stepguideestablishingtroubleshootinginfectionalongessentialdownstreamreadoutsRapidReliableVivoInfectionModelStudyEmergingYeastPathogenAntifungalFruitMini-hostPathogenicityVirulence

Similar Articles

Cited By