The Rice Serine/Arginine Splicing Factor RS33 Regulates Pre-mRNA Splicing during Abiotic Stress Responses.

Haroon Butt, Jeremie Bazin, Kasavajhala V S K Prasad, Nourelislam Awad, Martin Crespi, Anireddy S N Reddy, Magdy M Mahfouz
Author Information
  1. Haroon Butt: Laboratory for Genome Engineering and Synthetic Biology, Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia. ORCID
  2. Jeremie Bazin: CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, University Paris-Saclay and University of Paris Bâtiment 630, 91192 Gif sur Yvette, France.
  3. Kasavajhala V S K Prasad: Department of Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA. ORCID
  4. Nourelislam Awad: Helmy Institute of Biomedical Science, Zewail City of Science and Technology, Ahmed Zewail Road, Giza 12578, Egypt. ORCID
  5. Martin Crespi: CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, University Paris-Saclay and University of Paris Bâtiment 630, 91192 Gif sur Yvette, France. ORCID
  6. Anireddy S N Reddy: Department of Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
  7. Magdy M Mahfouz: Laboratory for Genome Engineering and Synthetic Biology, Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia. ORCID

Abstract

Abiotic stresses profoundly affect plant growth and development and limit crop productivity. Pre-mRNA splicing is a major form of gene regulation that helps plants cope with various stresses. Serine/arginine (SR)-rich splicing factors play a key role in pre-mRNA splicing to regulate different biological processes under stress conditions. Alternative splicing (AS) of SR transcripts and other transcripts of stress-responsive genes generates multiple splice isoforms that contribute to protein diversity, modulate gene expression, and affect plant stress tolerance. Here, we investigated the function of the plant-specific SR protein RS33 in regulating pre-mRNA splicing and abiotic stress responses in rice. The loss-of-function mutant showed increased sensitivity to salt and low-temperature stresses. Genome-wide analyses of gene expression and splicing in wild-type and seedlings subjected to these stresses identified multiple splice isoforms of stress-responsive genes whose AS are regulated by RS33. The number of RS33-regulated genes was much higher under low-temperature stress than under salt stress. Our results suggest that the plant-specific splicing factor RS33 plays a crucial role during plant responses to abiotic stresses.

Keywords

References

  1. Funct Integr Genomics. 2011 Jun;11(2):293-305 [PMID: 21213008]
  2. DNA Res. 2005 Feb 28;12(1):9-26 [PMID: 16106749]
  3. Plant Cell. 2015 Dec;27(12):3294-308 [PMID: 26603559]
  4. Mol Cells. 2017 Jan;40(1):1-9 [PMID: 28152302]
  5. Plant Physiol. 2010 Oct;154(2):772-83 [PMID: 20699397]
  6. PLoS Genet. 2013;9(10):e1003875 [PMID: 24146632]
  7. Sci Rep. 2019 Nov 19;9(1):17030 [PMID: 31745110]
  8. Nat Rev Mol Cell Biol. 2013 Mar;14(3):153-65 [PMID: 23385723]
  9. BMC Plant Biol. 2018 Aug 29;18(1):174 [PMID: 30157762]
  10. Plant Cell. 2006 Jul;18(7):1736-49 [PMID: 16751345]
  11. Mol Cell. 2019 Oct 17;76(2):329-345 [PMID: 31626751]
  12. Plant J. 2017 Jan;89(2):291-309 [PMID: 27664942]
  13. Hortic Res. 2019 Nov 8;6:122 [PMID: 31728197]
  14. Mol Cell. 2010 Apr 9;38(1):67-77 [PMID: 20385090]
  15. RNA. 2015 Jan;21(1):75-92 [PMID: 25414008]
  16. Biochem J. 2009 Jan 1;417(1):15-27 [PMID: 19061484]
  17. Plant Cell Physiol. 2007 Jul;48(7):1036-49 [PMID: 17556373]
  18. Int J Mol Sci. 2017 Feb 20;18(2): [PMID: 28230724]
  19. Plant Cell. 2011 Jan;23(1):396-411 [PMID: 21258002]
  20. Plant Mol Biol. 2011 Apr;75(6):593-605 [PMID: 21331630]
  21. Rice (N Y). 2019 Oct 21;12(1):76 [PMID: 31637532]
  22. Genome Biol. 2009;10(10):242 [PMID: 19857271]
  23. Science. 2010 Sep 10;329(5997):1355-8 [PMID: 20829488]
  24. Sci Rep. 2020 Jun 19;10(1):9958 [PMID: 32561778]
  25. Plant Mol Biol. 2009 May;70(1-2):79-102 [PMID: 19199050]
  26. Dev Cell. 2001 Dec;1(6):771-81 [PMID: 11740939]
  27. Science. 2014 Apr 25;344(6182):427-30 [PMID: 24763593]
  28. Synth Biol (Oxf). 2021 Sep 02;6(1):ysab025 [PMID: 34522785]
  29. Cold Spring Harb Perspect Biol. 2019 Nov 1;11(11): [PMID: 30765414]
  30. Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10296-301 [PMID: 20479230]
  31. Plant Physiol. 2009 Jul;150(3):1450-8 [PMID: 19403727]
  32. Plant Cell. 2010 Sep;22(9):2926-9 [PMID: 20884799]
  33. Nucleic Acids Res. 2006 Jun 28;34(11):3267-78 [PMID: 16807317]
  34. Plant Physiol. 2017 Apr;173(4):2370-2382 [PMID: 28223317]
  35. BMC Genomics. 2015 Sep 25;16(1):731 [PMID: 26407850]
  36. Front Plant Sci. 2017 Aug 24;8:1441 [PMID: 28883826]
  37. Plants (Basel). 2020 Aug 25;9(9): [PMID: 32854449]
  38. Plant Cell. 2019 Sep;31(9):2052-2069 [PMID: 31266850]
  39. Biochem Biophys Res Commun. 2014 Dec 12;455(3-4):312-7 [PMID: 25446093]
  40. New Phytol. 2020 Feb;225(3):1247-1260 [PMID: 31574173]
  41. Plant Cell. 2016 Aug;28(8):1910-25 [PMID: 27436712]
  42. Annu Rev Plant Biol. 2014;65:415-42 [PMID: 24471833]
  43. Genes (Basel). 2019 Aug 07;10(8): [PMID: 31394891]
  44. Plant Mol Biol. 2019 Jul;100(4-5):379-390 [PMID: 30968308]
  45. PLoS One. 2007 May 30;2(5):e471 [PMID: 17534421]
  46. Plant J. 2018 May;94(3):454-468 [PMID: 29436050]
  47. Cell. 2009 Feb 20;136(4):701-18 [PMID: 19239890]
  48. Mol Plant. 2015 Jul;8(7):1053-68 [PMID: 25684655]
  49. Plant Cell. 2013 Oct;25(10):3640-56 [PMID: 24179132]
  50. Plant Biotechnol J. 2020 Dec;18(12):2370-2372 [PMID: 32415890]
  51. Nucleic Acids Res. 2018 Feb 28;46(4):1777-1792 [PMID: 29228330]
  52. Plant Physiol. 2016 Jun;171(2):1427-42 [PMID: 27208272]
  53. FEBS J. 2011 Sep;278(18):3246-55 [PMID: 21794093]
  54. Plant J. 2007 Mar;49(6):1091-107 [PMID: 17319848]
  55. Trends Biotechnol. 2020 Mar;38(3):236-240 [PMID: 31477243]
  56. Plant Physiol. 2008 May;147(1):41-57 [PMID: 18354039]
  57. Annu Rev Biochem. 2015;84:291-323 [PMID: 25784052]
  58. Plant Cell Physiol. 2019 Sep 1;60(9):1897-1905 [PMID: 31093678]
  59. Front Plant Sci. 2018 Aug 15;9:1174 [PMID: 30158945]
  60. PLoS Genet. 2013;9(9):e1003779 [PMID: 24068953]
  61. Plant Physiol. 2022 Jun 27;189(3):1833-1847 [PMID: 35474141]
  62. Plant Cell. 2013 Oct;25(10):3657-83 [PMID: 24179125]
  63. Nucleic Acids Res. 2019 Apr 8;47(6):2716-2726 [PMID: 30793202]
  64. BMC Genomics. 2017 Mar 27;18(1):260 [PMID: 28347276]
  65. Biosci Rep. 2012 Aug;32(4):345-59 [PMID: 22762203]
  66. Int J Mol Sci. 2014 Sep 29;15(10):17541-64 [PMID: 25268622]
  67. Plant Physiol. 2020 Jan;182(1):255-271 [PMID: 31753844]
  68. Plant Physiol Biochem. 2007 Aug;45(8):521-34 [PMID: 17560114]
  69. F1000Res. 2019 May 14;8: [PMID: 31131087]
  70. Nat Rev Mol Cell Biol. 2017 Nov;18(11):655-670 [PMID: 28951565]
  71. Commun Biol. 2021 May 5;4(1):529 [PMID: 33953336]
  72. BMC Genomics. 2014 Jun 04;15:431 [PMID: 24897929]
  73. Nat Biotechnol. 2017 May;35(5):438-440 [PMID: 28244994]
  74. Science. 2012 Aug 17;337(6096):816-21 [PMID: 22745249]
  75. Trends Plant Sci. 2019 Jun;24(6):496-506 [PMID: 30852095]
  76. Genome Res. 2010 Jan;20(1):45-58 [PMID: 19858364]
  77. Biology (Basel). 2021 Apr 08;10(4): [PMID: 33917813]
  78. Science. 2013 Feb 15;339(6121):823-6 [PMID: 23287722]
  79. Mol Cell. 2005 Mar 4;17(5):613-5 [PMID: 15749011]
  80. Genome Biol. 2019 Apr 30;20(1):73 [PMID: 31036069]
  81. Wiley Interdiscip Rev RNA. 2015 Jan-Feb;6(1):93-110 [PMID: 25155147]
  82. Plant J. 2014 Oct;80(1):93-105 [PMID: 25039836]
  83. Plant Cell. 2006 Jan;18(1):146-58 [PMID: 16339852]
  84. Nat Biotechnol. 2013 Aug;31(8):688-91 [PMID: 23929339]
  85. Genome Biol. 2014 Jan 07;15(1):R1 [PMID: 24393432]
  86. New Phytol. 2021 May;230(3):1273-1287 [PMID: 33453070]
  87. Front Plant Sci. 2018 Nov 15;9:1636 [PMID: 30498503]
  88. Plant Sci. 2019 Jun;283:127-134 [PMID: 31128682]
  89. PeerJ. 2021 Mar 15;9:e11052 [PMID: 33777532]
  90. Trends Plant Sci. 2018 Feb;23(2):140-150 [PMID: 29074233]
  91. Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7247-52 [PMID: 21482766]
  92. Plant Cell. 2018 Oct;30(10):2267-2285 [PMID: 30254029]
  93. Genes Dev. 2010 Jun 1;24(11):1073-4 [PMID: 20516191]
  94. Nat Biotechnol. 2013 Aug;31(8):686-8 [PMID: 23929338]
  95. Sci Rep. 2011;1:29 [PMID: 22355548]
  96. Biochimie. 2015 Jun;113:93-9 [PMID: 25882680]
  97. Front Plant Sci. 2020 Mar 24;11:286 [PMID: 32265953]

MeSH Term

Arginine
Genome-Wide Association Study
Oryza
Plant Proteins
Plants
Protein Isoforms
RNA Precursors
RNA Splicing Factors
Serine
Stress, Physiological

Chemicals

Plant Proteins
Protein Isoforms
RNA Precursors
RNA Splicing Factors
Serine
Arginine

Word Cloud

Created with Highcharts 10.0.0splicingstressstressesSRRS33plantgenepre-mRNAgenesabioticAbioticaffectPre-mRNAroleAStranscriptsstress-responsivemultiplespliceisoformsproteinexpressionplant-specificresponsessaltlow-temperatureSplicingprofoundlygrowthdevelopmentlimitcropproductivitymajorformregulationhelpsplantscopevariousSerine/arginine-richfactorsplaykeyregulatedifferentbiologicalprocessesconditionsAlternativegeneratescontributediversitymodulatetoleranceinvestigatedfunctionregulatingriceloss-of-functionmutantshowedincreasedsensitivityGenome-wideanalyseswild-typeseedlingssubjectedidentifiedwhoseregulatednumberRS33-regulatedmuchhigherresultssuggestfactorplayscrucialRiceSerine/ArginineFactorRegulatesStressResponsesproteinsalternativegenomeengineering

Similar Articles

Cited By