Antifungal Activity of the Frog Skin Peptide Temporin G and Its Effect on Virulence Factors.

Felicia Diodata D'Auria, Bruno Casciaro, Marta De Angelis, Maria Elena Marcocci, Anna Teresa Palamara, Lucia Nencioni, Maria Luisa Mangoni
Author Information
  1. Felicia Diodata D'Auria: Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy. ORCID
  2. Bruno Casciaro: Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy. ORCID
  3. Marta De Angelis: Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy. ORCID
  4. Maria Elena Marcocci: Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy. ORCID
  5. Anna Teresa Palamara: Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy. ORCID
  6. Lucia Nencioni: Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy. ORCID
  7. Maria Luisa Mangoni: Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy. ORCID

Abstract

The increasing resistance to conventional antifungal drugs is a widespread concern, and a search for new compounds, active against different species of fungi, is demanded. Antimicrobial peptides (AMPs) hold promises in this context. Here we investigated the activity of the frog skin AMP Temporin G (TG) against a panel of fungal strains, by following the Clinical and Laboratory Standards Institute protocols. TG resulted to be active against (i) species and with MIC between 4 µM and 64 µM after 24 h of incubation; (ii) dermatophytes with MIC ranging from 4 to 32 µM, and (iii) strains with MIC of 128 µM. In addition, our tests revealed that TG reduced the metabolic activity of cells, with moderate membrane perturbation, as proven by XTT and Sytox Green assays, respectively. Furthermore, TG was found to be effective against some virulence factors; indeed, at 64 µM it was able to inhibit ~90% of yeast-mycelial switching, strongly prevented biofilm formation, and led to a 50% reduction of metabolic activity in mature biofilm cells, and ~30-35% eradication of mature biofilm biomass. Even though further studies are needed to deepen our knowledge of the mechanisms of TG antifungal activity, our results suggest this AMP as an attractive lead compound for treatment of fungal diseases.

Keywords

References

  1. Curr Opin Microbiol. 1998 Dec;1(6):687-92 [PMID: 10066539]
  2. J Antibiot (Tokyo). 2017 Mar;70(3):231-237 [PMID: 27876749]
  3. Methods Mol Biol. 2011;692:219-33 [PMID: 21031315]
  4. Swiss Med Wkly. 2016 Feb 22;146:w14281 [PMID: 26901377]
  5. Curr Top Med Chem. 2016;16(1):54-64 [PMID: 26139114]
  6. Biochim Biophys Acta. 2006 Sep;1758(9):1245-56 [PMID: 16697975]
  7. Med Mycol. 2011 Apr;49(3):253-62 [PMID: 21039308]
  8. FEMS Microbiol Lett. 2002 Aug 27;214(1):95-100 [PMID: 12204378]
  9. Microbiologica. 1985 Jan;8(1):85-99 [PMID: 3883103]
  10. Clin Infect Dis. 2013 Jun;56(12):1724-32 [PMID: 23487382]
  11. Immunol Rev. 2004 Apr;198:169-84 [PMID: 15199962]
  12. PLoS One. 2009 Sep 28;4(9):e7191 [PMID: 19784377]
  13. Antimicrob Agents Chemother. 2018 Apr 26;62(5): [PMID: 29483113]
  14. Clin Microbiol Infect. 2016 Jan;22(1):87-93 [PMID: 26432192]
  15. Biochim Biophys Acta. 2013 Feb;1828(2):652-60 [PMID: 22974815]
  16. Lancet. 2001 Jul 14;358(9276):135-8 [PMID: 11463434]
  17. Nature. 1974 Jul 26;250(464):344-6 [PMID: 4605454]
  18. Curr Opin Investig Drugs. 2004 Feb;5(2):186-97 [PMID: 15043393]
  19. Microbiol Mol Biol Rev. 2007 Jun;71(2):348-76 [PMID: 17554048]
  20. Curr Opin Microbiol. 2020 Aug;56:1-6 [PMID: 32599521]
  21. Nat Protoc. 2008;3(9):1494-500 [PMID: 18772877]
  22. Virulence. 2020 Dec;11(1):337-348 [PMID: 32274962]
  23. Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22473-22483 [PMID: 32848055]
  24. Curr Opin Microbiol. 2019 Dec;52:1-6 [PMID: 31085405]
  25. PLoS One. 2017 Mar 20;12(3):e0174024 [PMID: 28319176]
  26. Int J Mol Sci. 2020 Dec 10;21(24): [PMID: 33321906]
  27. Front Med (Lausanne). 2018 Feb 13;5:28 [PMID: 29487851]
  28. Eukaryot Cell. 2004 Oct;3(5):1076-87 [PMID: 15470236]
  29. J Bacteriol. 2001 Sep;183(18):5385-94 [PMID: 11514524]
  30. Intensive Care Med. 2014 Oct;40(10):1489-98 [PMID: 25082359]
  31. Pathog Dis. 2016 Jun;74(4):ftw018 [PMID: 26960943]
  32. Antimicrob Agents Chemother. 2017 Jul 25;61(8): [PMID: 28584159]
  33. Biochim Biophys Acta. 2009 Aug;1788(8):1600-9 [PMID: 19394305]
  34. FEBS Lett. 2000 Aug 11;479(1-2):6-9 [PMID: 10940378]
  35. Curr Top Med Chem. 2019;19(28):2593-2609 [PMID: 31746290]
  36. Front Immunol. 2018 Jan 10;8:1968 [PMID: 29375581]
  37. J Antibiot (Tokyo). 1995 Apr;48(4):306-10 [PMID: 7775267]
  38. Life Sci. 2021 Jan 15;265:118803 [PMID: 33238167]
  39. J Microbiol. 2016 Mar;54(3):145-8 [PMID: 26920875]
  40. Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):599-604 [PMID: 19116272]
  41. Experientia Suppl. 1983;46:187-95 [PMID: 6232148]
  42. Eur J Med Chem. 2017 Oct 20;139:750-761 [PMID: 28863356]
  43. Drugs. 2017 Apr;77(6):599-613 [PMID: 28236169]
  44. Cell. 1997 Sep 5;90(5):939-49 [PMID: 9298905]
  45. Mycoses. 2020 Apr;63(4):352-360 [PMID: 31943428]
  46. Eukaryot Cell. 2003 Oct;2(5):1053-60 [PMID: 14555488]
  47. FASEB J. 2021 Feb;35(2):e21358 [PMID: 33538061]
  48. J Nat Prod. 2008 Oct;71(10):1720-5 [PMID: 18816139]
  49. Ann Clin Microbiol Antimicrob. 2021 May 13;20(1):34 [PMID: 33985505]
  50. Front Microbiol. 2014 Feb 06;5:41 [PMID: 24567730]
  51. Microorganisms. 2020 Jan 22;8(2): [PMID: 31979032]
  52. PLoS One. 2012;7(3):e33705 [PMID: 22479431]
  53. Nat Rev Microbiol. 2021 Jul;19(7):454-466 [PMID: 33558691]
  54. Front Immunol. 2017 Jun 07;8:629 [PMID: 28638380]
  55. World J Microbiol Biotechnol. 1990 Sep;6(3):346-7 [PMID: 24430080]
  56. J Chemother. 2001 Aug;13(4):377-83 [PMID: 11589479]
  57. Fungal Genet Biol. 2019 Nov;132:103255 [PMID: 31330295]
  58. Lancet Infect Dis. 2018 Nov;18(11):e339-e347 [PMID: 30078662]
  59. Ann N Y Acad Sci. 2019 Jan;1435(1):57-78 [PMID: 29762860]
  60. Antibiotics (Basel). 2021 Oct 28;10(11): [PMID: 34827250]
  61. Biochimie. 2020 Aug;175:132-145 [PMID: 32534825]
  62. Mem Inst Oswaldo Cruz. 2020 Oct 09;115:e200430 [PMID: 33053052]
  63. Eur J Biochem. 1996 Dec 15;242(3):788-92 [PMID: 9022710]
  64. J Fungi (Basel). 2020 Oct 08;6(4): [PMID: 33050019]
  65. Pharmaceuticals (Basel). 2021 May 20;14(5): [PMID: 34065420]
  66. Surg Infect (Larchmt). 2020 May;21(4):309-322 [PMID: 31804896]
  67. Pharmaceutics. 2022 Feb 21;14(2): [PMID: 35214187]
  68. Virulence. 2017 Apr 3;8(3):352-358 [PMID: 27736307]
  69. Antibiotics (Basel). 2020 Jul 26;9(8): [PMID: 32722535]
  70. Microbes Infect. 2016 May;18(5):310-21 [PMID: 26806384]
  71. PLoS One. 2011 Feb 23;6(2):e17046 [PMID: 21407800]
  72. Exp Ther Med. 2015 Nov;10(5):1768-1776 [PMID: 26640548]
  73. Can J Microbiol. 2022 Jun;68(6):427-434 [PMID: 35286812]
  74. Antimicrob Agents Chemother. 2006 Oct;50(10):3312-6 [PMID: 17005810]
  75. J Fungi (Basel). 2017 Feb 21;3(1): [PMID: 29371527]
  76. Int J Mol Sci. 2022 Jan 14;23(2): [PMID: 35055066]
  77. Eukaryot Cell. 2005 Aug;4(8):1493-502 [PMID: 16087754]
  78. Virulence. 2017 Feb 17;8(2):150-158 [PMID: 27268130]
  79. Mycoses. 2018 Jun;61(6):360-365 [PMID: 29468746]
  80. Immunol Rev. 2000 Feb;173:5-16 [PMID: 10719663]
  81. Can Commun Dis Rep. 2015 Jun 18;41(Suppl 4):3-4 [PMID: 29769965]
  82. Eur J Med Chem. 2017 Dec 1;141:346-361 [PMID: 29031078]
  83. Pharmaceuticals (Basel). 2013 Nov 28;6(12):1543-75 [PMID: 24287494]
  84. Biochem J. 2002 Nov 15;368(Pt 1):91-100 [PMID: 12133008]
  85. Science. 2018 May 18;360(6390):739-742 [PMID: 29773744]
  86. Int J Mol Sci. 2022 Jan 04;23(1): [PMID: 35008974]
  87. Expert Rev Anti Infect Ther. 2012 Jan;10(1):85-93 [PMID: 22149617]
  88. FASEB J. 2001 Jun;15(8):1431-2 [PMID: 11387247]
  89. J Chemother. 2003 Oct;15(5):454-60 [PMID: 14598937]
  90. Trends Microbiol. 2003 Jun;11(6):272-9 [PMID: 12823944]
  91. Nature. 2002 Jan 24;415(6870):389-95 [PMID: 11807545]
  92. Cell Mol Life Sci. 2014 Jul;71(13):2535-46 [PMID: 24221134]
  93. Indian Dermatol Online J. 2016 Mar-Apr;7(2):77-86 [PMID: 27057486]
  94. J Appl Microbiol. 2021 Jul;131(1):11-22 [PMID: 33249681]
  95. J Fungi (Basel). 2017 Oct 18;3(4): [PMID: 29371573]
  96. Appl Microbiol Biotechnol. 2021 Aug;105(16-17):6355-6367 [PMID: 34410437]

Grants

  1. Anna Tramontano 2018/Istituto Pasteur Italia Fondazione Cenci Bolognetti
  2. RM11916B6A28725C/Sapienza University of Rome
  3. 2017BMK8JR006/Ministry of Education, Universities and Research
  4. 2020KSY3KL/Ministry of Education, Universities and Research
  5. Ateneo 2020/Sapienza University of Rome
  6. Anna Tramontano 2019/Istituto Pasteur Italia Fondazione Cenci Bolognetti

MeSH Term

Animals
Antifungal Agents
Antimicrobial Cationic Peptides
Anura
Biofilms
Candida albicans
Microbial Sensitivity Tests
Virulence Factors

Chemicals

Antifungal Agents
Antimicrobial Cationic Peptides
temporin
Virulence Factors

Word Cloud

Created with Highcharts 10.0.0activityTGµMbiofilmantifungalTemporinGMICactivespeciespeptidesAMPfungalstrains464dermatophytesmetaboliccellsyeast-mycelialmaturemechanismsincreasingresistanceconventionaldrugswidespreadconcernsearchnewcompoundsdifferentfungidemandedAntimicrobialAMPsholdpromisescontextinvestigatedfrogskinpanelfollowingClinicalLaboratoryStandardsInstituteprotocolsresulted24hincubationiiranging32iii128additiontestsrevealedreducedmoderatemembraneperturbationprovenXTTSytoxGreenassaysrespectivelyFurthermorefoundeffectivevirulencefactorsindeedableinhibit~90%switchingstronglypreventedformationled50%reduction~30-35%eradicationbiomassEventhoughstudiesneededdeepenknowledgeresultssuggestattractiveleadcompoundtreatmentdiseasesAntifungalActivityFrogSkinPeptideEffectVirulenceFactorsAspergillusCandidaalbicansantimicrobialconversion

Similar Articles

Cited By (8)